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ABSTRACT

Many empirical studies have used numerical Bayesian methods for structural inference

in vector autoregressions that are identified solely on the basis of sign restrictions. Because

sign restrictions only provide set-identification of structural parameters, over certain regions

of the parameter space the posterior inference could only be a restatement of prior beliefs.

In this paper we characterize these regions, explicate the beliefs about parameters that are

implicit in conventional priors, provide an analytical characterization of the full posterior

distribution for arbitrary priors, and analyze the asymptotic properties of this posterior

distribution. We show that in a bivariate supply and demand example, if the population

correlation between the VAR residuals is negative, then even if one has available an infinite

sample of data, any inference about the supply elasticity is coming solely from the prior

distribution. More generally, the asymptotic posterior distribution of contemporaneous

coefficients in an n-variable VAR is confined to the set of values that orthogonalize the

population variance-covariance matrix of OLS residuals, with the height of the posterior

proportional to the height of the prior at any point within that set. We suggest that

researchers should defend their prior beliefs explicitly and report the difference between prior

and posterior distributions for key magnitudes of interest. We illustrate these methods with

a simple macroeconomic model.
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1 Introduction.

In pioneering papers, Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005) proposed

that structural inference using vector autoregressions might be based solely on prior beliefs

about the signs of the impacts of certain shocks. This approach has since been adopted in

hundreds of follow-up studies, and today is one of the most popular tools used by researchers

who seek to draw structural conclusions using VARs.

However, structural inference using sign restrictions is not without its shortcomings. An

assumption about signs is not enough by itself to identify structural parameters. What the

procedure actually delivers is a set of possible inferences, each of which is equally consistent

with both the observed data and the underlying restrictions. This feature raises a number

of challenges for users of the method.

From a frequentist perspective, the task of describing the set of values for magnitudes

of interest that cannot be rejected on the basis of classical hypothesis tests is both compu-

tationally demanding and conceptually awkward (see for example Moon, Schorfheide, and

Granziera, 2013). For this reason, the vast majority of applications use Bayesian methods.

However, the Bayesian approach raises another set of troubling issues. Most important

among these is the observation by Poirier (1998) and Moon and Schorfheide (2012) that,

since the data are uninformative about certain regions of the parameter space, for some

questions the Bayesian posterior inference will be determined purely from prior beliefs even

if the sample size is infinite. This key feature is overlooked in most of the published studies

using sign-restricted VARs.
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We advocate that instead researchers should base inference on informative priors that

reflect not just sign restrictions but also the relative plausibility of different parameter values

within the allowable set. We develop algorithms for Bayesian inference in structural vector

autoregressions with informative priors, generalizing the results in Sims and Zha (1998) to

a setting where some parameters may only be set-identified. Our formulation also takes

advantage of a natural conjugate distribution for structural variances to simplify the compu-

tational demands of Sims and Zha’s formulas. A key object that we suggest that researchers

should report is the difference between the prior and posterior distributions. Looking at

these can help get beyond the “black box” character of many sign-restriction studies and

allow the researcher to elucidate the exact features of the observed data that have mattered

for informing the posterior inference.

We demonstrate that as the sample size goes to infinity, the analyst could know with

certainty that structural parameters fall within a set S(Ω) that orthogonalizes the true

variance-covariance matrix, but within this set, the height of the infinite-sample posterior

distribution is simply a constant times the height of the prior distribution at that point. In

the case of a bivariate model in which sign restrictions are the sole identifying assumption,

if the reduced-form residuals have negative correlation, then S(Ω) allows any value for the

elasticity of supply but restricts the elasticity of demand to fall within a particular interval.

With positively correlated errors, the elasticity of demand could be any negative number

while the elasticity of supply is restricted to fall in a particular interval. We also explore

the implications of the popular uniform Haar prior. We show that although this prior is
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uninformative about the angles of rotation in certain matrices, for magnitudes of interest

such as elasticities, the Haar prior favors some values over others. The empirical conclusions

that are typically reported reflect these implicit prior beliefs in ways that have not been

recognized by applied researchers.

We claim a number of other benefits to our approach as well. First, given the weak

nature of information captured by sign restrictions alone, substantial gains may be available

from using additional information. For example, we may be confident not just that a supply

elasticity is positive but further may regard extremely large values as implausible. Kilian

and Murphy (2012) argued persuasively that incorporating such additional prior information

can substantially improve the inference. Their approach calls for insisting that supply

elasticities above a certain maximum can be ruled out a priori, but simultaneously using

no information about the plausibility of positive values just below that maximum. In

practice, researchers like Kilian and Murphy (2012) and Juvenal and Petrella (forthcoming)

use a set of different possible upper bounds as a form of robustness checking, acknowledging

as a practical matter that we’re not sure exactly where to impose the cutoffs. A more

natural approach would allow the prior plausibility to decline gradually as one considers

higher values for the supply elasticity, approaching zero continuously rather than exhibiting

a discrete drop at some cutoff. In this paper, we provide algorithms for Bayesian inference

using arbitrary priors for supply elasticities and other parameters, including prior densities

with abrupt, discrete cutoffs as well as priors that are continuous functions of the unknown

parameters. In a related paper, Caldara and Kamps (2012) nicely illustrated how one can
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use prior information about the progressivity of taxes to draw conclusions about the effects

of changes in tax laws on output. The tools developed here allow incorporating the insights

of Kilian and Murphy (2012) and Caldara and Kamps (2012) for use in any structural vector

autoregression for which the researcher may have more confidence in some prior restrictions

than others.

Second, our approach provides a constructive resolution of a key ambiguity in the litera-

ture using sign-restricted VARs. Applied researchers invariably want to report their results

in terms of point estimates. But that is problematic if the method only identifies a set of

possible answers. Fry and Pagan (2011) observed that it makes no sense from a frequentist

perspective to calculate the median across a set of equivalent models and that the point

estimates that are typically reported are in fact not consistent with the model’s theoretical

restriction that structural shocks should be uncorrelated. Inoue and Kilian (2013) pro-

posed one solution to this problem based on Bayesian analysis using the uniform Haar prior,

calculating the joint posterior distribution of the set of impulse-response coefficients and

reporting the path with the highest posterior mode. By contrast, our suggestion is that the

researcher should represent subjective beliefs in the form of an informative prior distribution.

The output of the statistical analysis is then a posterior distribution that summarizes what

has been learned from seeing the data. If we are interested in a particular magnitude, such

as the response after s periods of variable i to the jth structural shock, and specify a loss

function that summarizes the cost of getting the answer to that question wrong, then there

is an unambiguous optimal estimate to report. For example, with a quadratic loss function,
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the optimal point estimate is the posterior mean of ∂yi,t+s/∂ujt, though we demonstrate

below analytically that the expected loss may be infinite and the posterior mean may fail

to exist when the uniform Haar prior is used. If the loss function is the absolute value of

the deviation between the estimate and the true value, then we should report the posterior

median. Our procedure answers the Fry-Pagan objections in that the researcher reports the

full joint probability distribution over the set of all models, and any point estimates reported

represent the optimal estimate of the magnitude of interest. The calculation that delivers

this estimate is obtained not by an arbitrary ranking of equivalent models but instead by

integration over a well-defined probability distribution.

Indeed, with a well posed prior it is possible to calculate the unique optimal posterior

inference about any magnitude of interest. Such results are helpful not just for Bayesian

inference but for frequentist analysis as well, because any frequentist procedure that cannot

be derived as the optimal Bayesian decision for some prior and loss function should be

possible to improve upon.1

Finally, we note that our method allows the researcher to put as much or as little weight

on the prior as desired and to report how the results would change as a result. Our suggestion

is that researchers might typically want to report how the posterior inference changes as the

prior becomes less informative, as a road map for assessing the robustness of inference and

understanding the mapping between likelihood, prior, and posterior as advocated by Leamer

1 See for example Ferguson (1967, Chapter 2), Müller and Norets (2012), and Elliott, Müller, and Watson
(2012).
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(1978).2

We illustrate the promise of this method with a simple three-variable macroeconomic

model. We find that the data are not informative about the slope of the Phillips Curve but

contain some useful information about the effect of inflation on aggregate demand. The

data are also modestly informative about Taylor Rule parameters governing the response of

the Federal Reserve to the output gap and inflation, suggesting a smaller Fed response to

inflation than anticipated a priori. Overall, after seeing the data, a researcher would be

more confident that a monetary contraction lowers output and inflation, although there is

no strong evidence of the output effect lasting more than a few quarters.

The plan of the paper is as follows. Section 2 describes a possibly set-identified n-variable

VAR and derives the Bayesian posterior distribution for an arbitrary prior distribution on

contemporaneous coefficients assuming that priors for other parameters are chosen from the

natural conjugate classes. We also analyze the asymptotic properties of Bayesian inference

in this general setting. Section 3 discusses the use of sign restrictions for impacts at longer

horizons, and suggests that the correct way to approach these from a Bayesian perspective is

in the form of beliefs about the interaction between contemporaneous and lagged structural

coefficients. Section 4 illustrates these results in the case of a simple 2-variable example

based on supply and demand and relates them to the traditional approach to sign restrictions.

Section 5 applies our recommended approach to a 3-variable macroeconomic model. Section

2 Giacomini and Kitagawa (2013) proposed forming priors directly on the set of orthogonal matrices that
could transform residuals orthogonalized by the Cholesky factorization into an alternative orthogonalized
structure, and investigate the sensitivity of the resulting inference to the priors. By contrast, our approach
is to formulate priors directly in terms of beliefs about the economic structure.
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6 briefly concludes.

2 Bayesian inference for partially identified structural

vector autoregressions.

We investigate dynamic structural models of the form

Ayt = Bxt−1 + ut (1)

for yt an (n× 1) vector of observed variables, A an (n× n) matrix summarizing their con-

temporaneous structural relations, xt−1 a (k × 1) vector (with k = mn + 1) containing a

constant and m lags of y (x′t−1 = (y
′

t−1,y
′
t−2, ...,y

′
t−m, 1)

′), and ut an (n× 1) vector of struc-

tural disturbances assumed to be i.i.d. N(0,D) and mutually uncorrelated (D diagonal).

The reduced-form VAR associated with the structural model (1) is given by

yt = Φxt−1 + εt (2)

Φ = A−1B (3)

εt = A
−1ut (4)

E(εtε
′
t) = Ω = A−1D(A−1)′. (5)

In this section we suppose that the investigator begins with prior beliefs about the values of

the structural parameters represented by a density p(A,D,B), and show how observation

of the data YT = (x′0,y
′
1,y

′
2, ...,y

′
T )
′ would lead the investigator to revise those beliefs.3

3 Our derivations draw on insights from Sims and Zha (1998). The main difference is that we parameterize
the contemporaneous relations in terms of two matrices A and D, whereas they use a single matrix. This
allows us to derive simpler expressions and closed-form results along with asymptotic properties of Bayesian
inference.
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We represent prior information about the contemporaneous structural coefficients in the

form of an arbitrary prior distribution p(A). This prior could incorporate any combination

of exclusion restrictions, sign restrictions, and informative prior beliefs about elements of A.

For example, our procedure could be used to calculate the posterior distribution even if no

sign or exclusion restrictions were imposed. We also allow for interaction between the prior

beliefs about different parameters by specifying conditional prior distributions p(D|A) and

p(B|A,D) that potentially depend on A. We assume that there are no restrictions on the

lag coefficients in B other than the prior beliefs represented by the distribution p(B|A,D).

To represent possible prior information about D and B, we employ natural conjugate

priors to facilitate analytical characterization of results as well as to allow for simple empirical

implementation. We use Γ(κi, τ i) priors for the reciprocals of diagonal elements of D, taken

to be independent across equations,4

p(D|A) =�n
i=1 p(dii|A)

p(d−1ii |A) =






τ
κi
i

Γ(κi)
(d−1ii )

κi−1 exp(−τ id−1ii ) for d−1ii ≥ 0

0 otherwise

, (6)

where dii denotes the row i, column i element of D. Note that κi/τ i denotes the prior mean

for d−1ii and κi/τ
2
i its variance.

Normal priors are used for the lagged structural coefficients B, with results particularly

4 We will follow the notational convention of using p(.) to denote an arbitrary density, with the density
being referred to implicit by the argument. Thus p(A) is shorthand notation for pA(A) and represents a
different function from p(D), which in more careful notation would be denoted pD(D).
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simple if coefficients are taken to be independent N(mi, diiMi) across equations:

p(B|D,A) =�n
i=1 p(bi|D,A) (7)

p(bi|D,A) =
1

(2π)k/2|diiMi|1/2
exp[−(1/2)(bi −mi)

′(diiMi)
−1(bi −mi)]. (8)

Here b′i denotes the ith row of B (the lagged coefficients for the ith structural equation).

Thus mi denotes the prior mean for the lagged coefficients in the ith equation and diiMi

denotes the variance associated with this prior. In the specific examples employed below

we pose the prior in terms of an expected value η for the reduced-form coefficient matrix Φ

which implies that m′
i = a

′
iη where a

′
i denotes the ith row of A. The overall prior is thus

p(A,D,B) = p(A)
�n
i=1[p(dii|A)p(bi|D,A)]. (9)

With Gaussian residuals, the likelihood function (conditioning on the pre-sample values of

y0,y−1, ...,y−m+1) is given by

p(YT |A,D,B) = (2π)−Tn/2|det(A)|T |D|−T/2 ×

exp
�
−(1/2)�T

t=1(Ayt −Bxt−1)′D−1(Ayt −Bxt−1)
�

(10)

where |det(A)| denotes the absolute value of the determinant of A.

In Appendix A we derive the following characterization of the posterior distribution and

detail in Appendix B an algorithm that can be used to generate draws from this distribution.

Proposition 1. Let a′i denote the ith row of A, φ(x;µ,Σ) denote the multivariate

Normal density with mean µ and variance Σ evaluated at x and γ(x;κ, τ) denote a gamma

density with parameters κ and τ evaluated at x. If the likelihood is (10) and priors are
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given by (6)-(9) with m′
i = a

′
iη, then the posterior distribution can be written as

p(A,D,B|YT ) = p(A|YT )p(D|A,YT )p(B|A,D,YT )

with

p(B|A,D,YT ) =
�n
i=1 φ(bi;m

∗
i , diiM

∗
i )

m∗
i =

	�T
t=1 xt−1x

′
t−1 +M

−1
i


−1 	�T
t=1 xt−1y

′
tai +M

−1
i mi



(11)

M∗
i =

	�T
t=1 xt−1x

′
t−1 +M

−1
i


−1
(12)

p(D|A,YT ) =
�n
i=1 γ(d

−1
ii ;κ

∗
i , τ

∗
i )

κ∗i = κi + (T/2) (13)

τ∗i = τ i + (T/2)a′iΩ̂
∗
iTai (14)

Ω̂∗iT = T−1
��T

t=1 yty
′
t + ηM

−1
i η

′

−
	�T

t=1 ytx
′
t−1 + ηM

−1
i



M∗

i

	�T
t=1 xt−1y

′
t +M

−1
i η

′

�

(15)

Ω̂∗T = n−1
�n

i=1 Ω̂
∗
iT (16)

p(A|YT ) =
kTp(A)[det(AΩ̂

∗
TA

′)]T/2
�n
i=1[(2τ i/T ) + a

′
iΩ̂

∗
iTai]

κi+T/2
(17)

where kT denotes the constant for which (17) integrates to unity.

Consider first the posterior distribution for bi, the lagged coefficients in the ith structural

equation, conditional on A and D. In the special case of a noninformative prior for these

coefficients (M−1
i = 0), this takes the form of a Normal distribution centered at m∗

i =

	�T
t=1 xt−1x

′
t−1


−1 	�T
t=1 xt−1y

′
tai



, or the coefficient from an OLS regression of a′iyt on
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xt−1, with variance given by dii
	�T

t=1 xt−1x
′
t−1


−1
, again the OLS formula. Although the

Bayesian would describe m∗
i and diiM

∗
i as moments of the posterior distribution, they are

simple functions of the data, and it is also straightforward to use a frequentist perspective to

summarize the properties of the Bayesian posterior inference. In particular, as long asM−1
i

is finite and the true process for yt is covariance-stationary and ergodic for second moments,

we have that as the sample size T gets large,

m∗
i =

	
T−1

�T
t=1 xt−1x

′
t−1 + T−1M−1

i


−1 	
T−1

�T
t=1 xt−1y

′
tai + T−1M−1

i mi




p→


E(xt−1x

′
t−1)

−1�E(xt−1y′t)ai

andM∗
i

p→ 0. In other words, as long asM−1
i is finite, the values of the prior parametersmi

andMi are asymptotically irrelevant, and the Bayesian posterior distribution for bi collapses

to a Dirac delta function around the same plim that characterizes the OLS regression of a′iyt

on xt−1. Conditional on ai, the data are perfectly informative asymptotically about bi,

reproducing the familiar result that, for these features of the parameter space, the Bayesian

inference is the same asymptotically as frequentist inference and correctly uncovers the true

value.

Similarly for dii, the variance of the ith structural equation, in the special case of a

noninformative prior for B (that is, whenM−1
i = 0, i = 1, ..., n) we have that

Ω̂∗iT = T−1
�
�T

t=1 yty
′
t −

	�T
t=1 ytx

′
t−1


	�T
t=1 xt−1x

′
t−1


−1 	�T
t=1 xt−1y

′
t


�

= Ω̂T (18)

where Ω̂T = T−1
�T

t=1 ε̂tε̂
′
t is the sample variance matrix of ε̂t, the vector of residuals from
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OLS regression of yt on xt−1. If the priors for dii are also noninformative (κi = τ i = 0) ,

then the posterior expectation of d−1ii is given by κ
∗
i /τ

∗
i = 1/(a′iΩ̂Tai), the reciprocal of the

average squared residual from the OLS regression of a′iyt on xt−1, with variance κ
∗
i /(τ

∗
i )
2 =

2/[T (a′iΩ̂Tai)
2] again shrinking to zero as T gets large. In the case of general but nondog-

matic priors (κi, τ i and M
−1
i all finite), as T → ∞, the value of Ω̂∗iT still converges to the

OLS estimate Ω̂T , and the Bayesian posterior distribution for d
−1
ii conditional on ai will

collapse to a point mass at 1/(a′iΩ0ai) for Ω0 = E(εtε
′
t) the true variance matrix. Hence

again the priors are asymptotically irrelevant for inference about D conditional on A.

By contrast, prior beliefs about A will not vanish asymptotically unless the elements of

A are point identified. To see this, note that in the special case of noninformative prior

beliefs about B and D, the posterior (17) simplifies to

p(A|YT ) =
kTp(A)|det(AΩ̂TA′)|T/2
�
det

�
diag(AΩ̂TA′)

��T/2 (19)

where diag(AΩ̂TA
′) denotes a matrix whose diagonal elements are the same as those ofAΩ̂TA

′

and whose off-diagonal elements are zero. Thus when evaluated at any value of A that di-

agonalizes Ω̂T , the posterior distribution is proportional to the prior. Recall further from

Hadamard’s Inequality that if A has full rank and Ω̂T is positive definite, then

det
�
diag(AΩ̂TA

′)
�
≥ det

�
AΩ̂TA

′
�

with equality only if AΩ̂TA
′ is diagonal. Thus if we define

S(Ω) = {Ω : AΩA′ = diag(AΩA′)}, (20)
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then

p(A|YT ) = kTp(A) if A ∈ S(Ω̂T )

p→ 0 if A /∈ S(Ω̂T )

More formally, for any A and Ω we can measure the distance q(A,Ω) between A and

S(Ω) by the sum of squares of the off-diagonal elements of the Cholesky factor of AΩA′,

q(A,Ω) =
�n

i=2

�i−1
j=1 p

2
ij(A,Ω) P(A,Ω)[P(A,Ω)]′ = AΩA′, (21)

so that q(A,Ω) = 0 if and only if A ∈ S(Ω). Let Hδ(Ω) to be the set of all A that are

within a distance δ of the set S(Ω):

Hδ(Ω) = {A : q(A,Ω) ≤ δ}. (22)

As long as the prior puts nonzero mass on some values of A that are consistent with the

true Ω0 (Prob[A ∈ Hδ(Ω0)] > 0, ∀δ > 0), then asymptotically the posterior will have no

mass outside of this set (Prob{[A ∈ Hδ(Ω0)]|YT} → 1, ∀δ > 0). Proposition 2 summarizes

the above asymptotic claims; see Appendix C for the proofs.

Proposition 2. Let yt
(n×1)

be any process that is covariance stationary and ergodic for

second moments. Let xt
(k×1)

= (y′t,y
′
t−1, ...,y

′
t−m+1, 1)

′ and YT = (x′0,y
′
1,y

′
2, ...,y

′
T )
′. Define

Φ0
(n×k)

= E(ytx
′
t−1) {E(xtx′t)}

−1

Ω0
(n×n)

= E(ytx
′
t−1)− E(ytx

′
t−1) {E(xtx′t)}

−1
E(xt−1y

′
t)
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with E(xtx
′
t) and Ω0 both assumed to be positive definite. Define

�
A

(n×n)
, d−111 , ..., d

−1
nn, B

(n×k)

�

to be random variables whose joint density conditional on YT is given by

p(A,d−111 , ..., d
−1
nn ,B|YT ) = kTp(A)[det(AΩ̂

∗
TA

′)]T/2 ×

�n
i=1

γ(d−1ii ;κ
∗
i , τ

∗
i )φ(bi;m

∗
i , diiM

∗
i )

[(2τ i/T ) + a′iΩ̂
∗
iTai]

κi+T/2
(23)

where a′i and b′i denote the ith rows of A and B, respectively, and Ω̂∗iT , κ
∗
i , τ

∗
i ,m

∗
i ,M

∗
i are

the functions of YT defined in Proposition 1 where Mi is any invertible (k × k) matrix,

m′
i = a′iη for η any finite (n × k) matrix, τ i and κi any finite nonnegative constants, and

kT an integrating constant that depends only on Ω̂∗iT , τ i, κi (i = 1, ..., n) and the functional

form of p(A). Let p(A) be any bounded density for which
�
A∈Hδ(Ω0) p(A)dA > 0 for all

δ > 0 with Hδ(Ω) defined in (22). Then as the sample size T goes to infinity, the random

variables characterized by (23) have the following properties:

(i) B|A,d11, ..., dnn,YT
p→ AΦ0;

(ii) Ω̂∗iT
p→ Ω0;

(iii) dii|A,YT

p→ a′iΩ0ai;

(iv) Prob[A ∈ Hδ(Ω0)|YT ]→ 1 for all δ > 0.

Moreover, if κi = τ i = 0 and Mi = M for i = 1, ..., n, then when evaluated at any

A ∈ S(Ω̂∗T ),

(v) p(A|YT ) = kTp(A) for all T.

Note that while we originally motivated the expression in (23) as the Bayesian posterior

distribution for a Gaussian structural VAR, the results in Proposition 2 do not assume that
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the actual data are Gaussian or even that they follow a VAR. Nor does the proposition

make any use of the fact that there exists a Bayesian interpretation of these formulas. The

proposition provides a frequentist interpretation of what Bayesian inference amounts to when

the sample gets large. The proposition establishes that as long as the prior assigns nonzero

probability to a subset of A that diagonalizes the value Ω0 defined in the proposition, then

asymptotically the posterior density will be confined to that subset and at any point within

the set will converge to some constant times the value of the prior density at that point.

In the special case where the model is point-identified, there exists only one allowable

value of A for which AΩ0A
′ is diagonal. Provided that p(A) is nonzero in a neighborhood

including that point, the posterior distribution collapses to the Dirac delta function at this

value of A. This reproduces the familiar result that under point identification, the priors

on all parameters (A,D, and B) are asymptotically irrelevant and Bayesian inference is

asymptotically equivalent to maximum likelihood estimation, producing consistent estimates

of parameters.

For finite T, note that the posterior (17) reflects uncertainty about A that results not

just from the fact that the data cannot distinguish between alternative values for A within

the set S(Ω), but also uncertainty about the set S(Ω) itself due to sampling uncertainty

associated with Ω̂T . Recall that the log likelihood for a model that imposes no restrictions

at all on A, B, or D is given by

L(YT ) = −(Tn/2)[1 + log(2π)]− (T/2) log
�
det(Ω̂T )

�
. (24)

Comparing (24) with (19), it is clear with noninformative priors on D and B, the height
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of the posterior at some specified A is a transformation of the likelihood ratio test of the

hypothesis that the true AΩA′ is diagonal. The Bayesian approach thus provides a nice

tool for treating the two sources of uncertainty— uncertainty about alternative values within

the set S(Ω), and uncertainty about the boundaries of the set S(Ω) itself— symmetrically,

so that an optimal statistical or policy decision given the combined sources of uncertainty

could be reached.

3 Sign restrictions for higher-horizon impacts.

In an effort to try to gain additional identification, many applied researchers impose sign re-

strictions not just on the time-zero structural impacts ∂yt/∂u
′
t but also on impacts ∂yt+s/∂u

′
t

for some horizons s = 0, 1, ..., S. These are given by

∂yt+s
∂u′t

= ΨsA
−1 (25)

for Ψs the first n rows and columns of F
s for

F =






Φ1 Φ2 · · · Φm−1 Φm

In 0 · · · 0 0

...
... · · · ...

...

0 0 · · · In 0






(26)

yt = c+Φ1yt−1 +Φ2yt−2 + · · ·+Φmyt−m + εt.

In particular,

∂yt
∂u′t

= A−1 (27)
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∂yt+1
∂u′t

= Φ1A
−1. (28)

Consider first the case in which Φ1 is diagonal. If all the diagonal elements are pos-

itive, the signs of ∂yt+1/∂u
′
t are identical to those of A

−1 itself. In this case, if Φ1 were

known, there would be zero additional information from the signs of ∂yt+1/∂u
′
t beyond that

contained in the signs of ∂yt/∂u
′
t. Alternatively, if Φ1 is diagonal but the ith element is

negative, the signs of ∂yi,t+1/∂u
′
t are opposite those of ∂yit/∂u

′
t. In this case, as the sample

size grows to infinity, there will be no posterior distribution satisfying a restriction such as

∂yit/∂ujt and ∂yi,t+1/∂ujt are both positive. In a finite sample, a simulated draw from

the posterior distribution purporting to impose such a restriction would at best be purely

an artifact of sampling error. Canova and Paustian (2011) demonstrated using a popular

macro model that implications for the signs of structural multipliers beyond the zero horizon

(∂yt+s/∂u
′
t for s > 0) are generally not robust.

In the case when off-diagonal elements of Φ1 are nonzero, there could be some differences

in the signs of the effects of the shocks at horizons 0 and 1. However, it seems odd to view

nonzero off-diagonal entries in Φ1 as giving us additional information about the values of A.

Instead, it seems that what researchers primarily have in mind when using sign restrictions

at multiple horizons is a prior belief that Φ1 is similar to a matrix with positive diagonal

entries and modest off-diagonal elements, in which case the effect of shocks at horizon 0

should be the same sign as the effect at horizon 1. However, this is a prior belief not about

A but rather about the value of Φ1. The appropriate way to represent this prior information

from a Bayesian perspective is by specifying additional beliefs about Φ1, ...,Φm, as opposed

19



to refining our beliefs about the value of A.

A prior expectation that Φ1 = In and Φ2 = Φ3 = · · · = Φm = 0 would correspond

to a prior expectation that the structural shocks ut have the same effect on yt+s for all s.

Nudging the unrestricted OLS estimates in the direction of such a prior has long been known

to help improve the forecasting accuracy of a VAR.5 This suggests that we might want to

use priors for A and B that imply a value for η = E(Φ) in Proposition 1 given by

η
(n×k)

=

�

In
(n×n)

0
[n×(k−n)]

�

. (29)

As noted by Sims and Zha (1998), since B = AΦ, this calls for setting the prior mean for

B|A to be

E(B|A) = Aη

so mi = E(bi|A) = η′ai. We can also follow Doan, Litterman and Sims (1984) in putting

more confidence in our prior beliefs that higher-order lags are zero, as we describe in detail

in Appendix D.

Note however that while such a prior can improve estimates of the autoregressive coeffi-

cients Φ1, ...,Φm and reduced-form variance matrix Ω, it does not provide a separate basis

for estimation of A. The best it can do is help a finite sample more rapidly approach the

limiting distribution in Proposition 2. Regardless of the strength one wants to place on prior

beliefs about persistence of shocks, the data are uninformative for purposes of distinguishing

between alternative elements within the set S(Ω).

5 See for example Doan, Litterman and Sims (1984), Litterman (1986), and Smets and Wouters (2003).
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4 Bayesian inference in a 2-variable dynamic market

model.

To illustrate the above results, we consider in this section a simple model in which the

observed variables yt = (pt, qt)
′ are the logs of price and quantity and the structural equations

are the supply and demand schedules:

supply: qt = ks + αspt + bs11pt−1 + bs12qt−1 + bs21pt−2 + bs22qt−2 + · · ·+ bsm1pt−m + bsm2qt−m + ust

demand: qt = kd+βdpt+b
d
11pt−1+b

d
12qt−1+b

d
21pt−2+b

d
22qt−2+· · ·+bdm1pt−m+bdm2qt−m+udt . (30)

Here αs, the short-run price elasticity of supply, is presumed to be positive, while βd, the

short-run price elasticity of demand, should be negative. Note that the system (30) is a

special case of (1) with

A =





−αs 1

−βd 1




 . (31)

As in Shapiro and Watson (1988), for any given β one can find the maximum likelihood

estimate of α by an IV regression of ε̂2t on ε̂1t using ε̂2t − βε̂1t as instruments, where ε̂it are

the residuals from OLS estimation of the reduced-form VAR:

α̂(β) =

�T
t=1(ε̂2t − βε̂1t)ε̂2t�T
t=1(ε̂2t − βε̂1t)ε̂1t

=
(ω̂22 − βω̂12)

(ω̂12 − βω̂11)
(32)

for ω̂ij the row i, column j element of Ω̂ = T−1
�T

t=1 ε̂tε̂
′
t. One can verify directly that any

pair (α, β) satisfying (32) produces a diagonal matrix for AΩ̂A
′
.

The top panel of Figure 1 shows what the function α(β) looks like for the case when

the OLS residuals are negatively correlated. The particular values for Ω̂ used to construct
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Figure 1 are based on the estimated variance matrix of a VAR(4) for the growth rate of the

U.S. CPI and real GDP with the regressions estimated for t = 1986:Q1 to 2008:Q3:6

Ω̂ =






0.1129 −0.0308

−0.0308 0.2114




 . (33)

Thus any pair (α, β) lying on the black function plotted in the top panel of Figure 1 would

maximize the likelihood function, and there is no basis in the data for preferring one point

on the curve to any other.

If we restrict the supply elasticity α to be positive and the demand elasticity β to be

negative, we are left with the upper left quadrant in the figure. When, as in this example, the

OLS residuals are negatively correlated, the sign restriction is consistent with any α ∈ (0,∞),

but requires β to fall in (xL, xH) where

xL = ω̂22/ω̂12

xH = ω̂12/ω̂11.

Values of β outside this range are ruled out by the restriction that α must be positive. To

see why this is true algebraically, note first that for β < xL, the numerator of (32) becomes

negative with the denominator positive.7 Thus β < xL would imply a negative value for α

which is ruled out. At the other end, when β rises above xH , the value of α would switch

from +∞ to −∞. Hence a positive α requires β ∈ (xL, xH).

6 This is the period associated with the Great Moderation. For most other subsamples of postwar U.S.
data, the correlation between the residuals is smaller in absolute value, in which case the informativeness of
sign restrictions is even less than for the case analyzed here, as we shall see below.

7 The denominator of (32) is monotonically decreasing in β and at β = xL is equal to (ω̂
2

12
−ω̂22ω̂11)/ω̂12 >

0 whenever ω̂12 < 0 and Ω̂ is positive definite.
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To see the intuition behind these bounds, note that xH is the estimated coefficient from

an OLS regression of ε̂2t on ε̂1t, which is a weighted average of the positive supply elasticity α

and negative demand elasticity β (see for example Hamilton, 1994, equation [9.1.6]). Hence

the MLE for β can be no larger than xH and the MLE for α can be no smaller than xH .

The fact that the MLE for α can be no smaller than xH is not a restriction, because we

have separately required that α > 0 and in the case under discussion, xH < 0. However,

the inference that β can be no larger than xH has content. At the other end, the OLS

coefficient from a regression of ε̂1t on ε̂2t (that is, x
−1
L ) turns out to be a weighted average

of α−1 and β−1, requiring α−1 > x−1L (again not binding when xL < 0) and β−1 < x−1L ; the

latter gives us the inference that β > xL. This is the intuition for why xL < β < xH .

In the case when the correlation between the VAR residuals is instead positive, maximum

likelihood estimation is consistent with any value for the demand elasticity β, while the

supply elasticity α is constrained to fall in the interval (xL, xH), which when ω̂12 > 0 is a

subset of the positive real line.

The bottom panel in Figure 1 plots contours of the concentrated likelihood function for

U.S. inflation and output growth, that is, contours of the function

T log |det(A)| − (T/2) log
�
det

�
diag(AΩ̂A

′
)
��

.

The data are relatively informative that α and β should be close to the values that diagonalize

Ω̂, that is, that α and β are close to the function α = α(β) shown in black, but the data

give us no basis for choosing some values within this set over others.

The set S(Ω) in expression (20) is calculated for this example as follows. When the
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correlation between the VAR residuals ω12 is negative, S(Ω) is the set of all A in (31) such

that α > 0, (ω22/ω12) < β < (ω12/ω11), and α = (ω22 − βω12)/(ω12 − βω11), in other words,

the set of points on the black curve in Figure 1 between xL and xH .

As an illustration of our suggested approach, we use noninformative priors for D and

B, so that the matrix Ω̂∗T in (16) is simply the unrestricted VAR estimate Ω̂ in (33). We

represent prior beliefs about the elasticities α and β using truncated Student t distributions:

p(α) =






[1− F (0; cα, σα, να)]
−1f(α; cα, σα, να) if α ≥ 0

0 otherwise

(34)

p(β) =






F (0; cβ, σβ, νβ)
−1f(β; cβ, σβ, νβ) if β ≤ 0

0 otherwise

. (35)

Here f(x; c, σ, ν) denotes the density for a Student t variable with location c, scale σ, and

degrees of freedom ν evaluated at x,

f(x; c, σ, ν) =
Γ(ν+1

2
)√

νπσΓ(ν/2)

�
1 +

(x− c)2

σ2ν

�−(ν+1)/2
(36)

and F (.) the cumulative distribution function F (x; c, σ, ν) =
� x
−∞f(z; c, σ, ν)dz. Here cα > 0

and cβ < 0 denote the prior modes, and σ and ν govern confidence in the prior, with larger

σ and smaller ν registering more prior uncertainty. Including ν as a separate parameter

to govern tail behavior allows the prior to have infinite variance when ν = 2 and even an

undefined mean when ν = 1. Suppose we have the prior belief that a supply elasticity of

+1 and demand elasticity of −1 were the most likely values, with uncertainty around these

numbers represented with a scale parameter of unity and 5 degrees of freedom:

cα = 1, cβ = −1, σα = σβ = 1, να = νβ = 5.
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Contours for this prior distribution are provided in the top panel of Figure 2. A researcher

using these priors would be relatively surprised to see an elasticity greater than 2 in absolute

value. The bottom panel displays contours for the posterior distribution. The prior

distribution leads the researcher to favor those points along the α(β) schedule associated

with values for the supply and demand elasticities that are less than 2 in absolute value.

If the sample size were to grow to infinity, the posterior would simply become the prior

distribution constrained to the set S(Ω).

We plot the prior and posterior marginal distributions for α and β in Figure 3. Even

though the data do not restrict the value of α, it turns out they are informative about α in a

Bayesian sense given our prior beliefs. Prior to seeing the data, we thought very low values

for the supply elasticity were fairly likely. However, given the data, a value for the supply

elasticity below 0.5 would require a demand elasticity below -2.5 (see Figure 1), the latter

having been regarded as a priori unlikely. For this reason, the posterior has less mass on

the lower supply elasticities than the prior, though the adjustment is not large. The data

are a little more informative about the demand elasticity, since the data cast considerable

doubt on a value of β > xH = −0.273.

Our recommendation is that researchers routinely report the way in which the data add

information (or fail to add information) relative to prior beliefs. In a more complicated model

for which this cannot be calculated analytically as here, or if the researcher does not have

time for these analytical calculations, we recommend that the researcher should characterize

the posterior distribution by the numerical simulation algorithm given in Appendix B, and
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plot the histogram of the draws from the posterior distribution against the prior distribution

from which the analysis derives. We will provide additional illustrations of this approach

below.

4.1 Implicit prior and posterior distributions associated with the

conventional sign-restriction methodology.

The above results might seem foreign to many users of sign-restricted VARs, because the

algorithms typically adopted do not explicate the forms of priors such as p(α) or p(β). In this

subsection we demonstrate how the results of the preceding subsection relate to conventional

methods for inference in sign-restricted VARs.

One difference is that whereas we have focused on estimation of the structural parameters

in A, most sign-restricted analyses instead pose the question in terms of the impacts of

structural shocks at horizon 0,

H =
∂yt
∂u′t

,

which from (27) means H = A−1. At least in the case of n = 2 variables, it is simple to find

a mapping between the two representations, since we could normalize using the convention

that demand and supply shocks are two kinds of events that each result in a 1% increase in

price. This amounts to normalizing H as





εpt

εqt




 =






1 1

h g










ust

udt




 . (37)

For this normalization, it turns out that h = βd, the short-run price-elasticity of demand,
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while g = αs, the short-run price-elasticity of supply,8 meaning that for this normalization,

the impact parameters are numerically identical to the structural elasticities. The prior

restriction that a supply shock that raises price should lower the quantity (h < 0) is identical

to the prior restriction that the demand curve slopes down (βd < 0).

In the typical application of a sign-restricted VAR, the vector of structural disturbances

ut is instead normalized to have identity variance matrix and the relation between structural

shocks ut and the reduced-form disturbances εt is described as

εt = PQut (38)

where P is estimated from the Cholesky factor of the reduced-form variance matrix,

P̂P̂
′
= Ω̂ = T−1

�T
t=1 ε̂tε̂

′
t (39)

and Q is an orthogonal matrix (QQ′ = In) that is uniformly distributed in the sense of Haar

(1933). Rubio-Ramírez, Waggoner, and Zha (2010) adapted the ideas in Stewart (1980) to

propose a constructive algorithm to generate draws for Q from this distribution, which we

briefly summarize in Appendix E.9

8 Specifically, if we let u∗t denote the vector of structural disturbances when the system is written in the
form (30), then using (31), the relation εt =A

−1
u
∗

t can equivalently be written
�
εpt
εqt

�
= (βd − αs)−1

�
1 −1
βd −αs

��
u∗st
u∗dt

�

=

�
1 1

βd αs

� �
(βd − αs)−1u∗st
−(βd − αs)−1u∗dt

�

=

�
1 1
h g

� �
ust
udt

�

for h = βd, g = αs, ust = (β
d − αs)−1u∗st , and udt = −(βd − αs)−1u∗dt .

9 Arias, Rubio-Ramírez, and Waggoner (2013) have recently generalized these algorithms to handle both
zero and sign restrictions.
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The implicit prior associated with this procedure is best understood as a joint distribution

p(Ω,Q) which has been factored as the product of a marginal distribution for Ω and a

distribution for Q conditional on Ω, p(Ω,Q) = p(Ω)p(Q|Ω). The prior for Ω can be viewed

as a Wishart distribution for the inverse of the reduced-form residual variance matrix,

p(Ω−1) =

�

2Nn/2πn(n−1)/4
n�

j=1

Γ

�
N + 1− j

2

��−1
×

|Λ|n/2|Ω|−(N−n−1)/2 exp
�
−1

2
tr

�
Ω−1Λ

 �
, (40)

where N is the degrees of freedom and Λ is the scale matrix for the prior while n is the

dimension of εt. A diffuse prior for Ω can be viewed as the limiting case as N → 0 and

Λ→ 0. The prior for Q conditional on Ω is a uniform Haar distribution among the set of

orthogonal matrices truncated by the sign restrictions imposed on PQ.

In the case when the number of observed variables n = 2, the set of orthogonal matrices

Q can be characterized as either rotations10

Q1 =





cos θ − sin θ

sin θ cos θ






or reflections

Q2 =





cos θ sin θ

sin θ − cos θ






for some θ ∈ [−π, π]. In this case, an algorithm for generating a draw from Q|Ω that is

equivalent to that of Rubio-Ramírez, Waggoner, and Zha (2010) would be to first generate

10 Caldara and Kamps (2012) use this rotation matrix to analyze the implications of the traditional
sign-restriction methodology for the allowable range for A−1 in a particular numerical example.
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θ from a uniform distribution over [−π, π] and then select Q1 or Q2 with probability 1/2.

The four parameters used in the previous subsection to describe the structural representation

λ = (α, β, σ2s, σ
2
d)
′ would for this method instead be summarized by λ∗= (θ, p11, p21, p22)

′.

Using the rotation matrix Q1 for illustration, notice that

PQ1 =





p11 0

p21 p22










cos θ − sin θ

sin θ cos θ






=






p11 cos θ −p11 sin θ

(p21 cos θ + p22 sin θ) (−p21 sin θ + p22 cos θ)




 . (41)

Comparing (38) with (37), the relation between the parameterizations is

βd = h =
p21 cos θ + p22 sin θ

p11 cos θ
=

p21
p11

+
p22
p11

tan θ (42)

αs = g =
p21
p11

− p22
p11

cot θ. (43)

Recall that when θ ∼ U(−π, π), tan θ or cot θ have a standard Cauchy distribution (e.g.,

Gubner, 2006, p. 194).11 Thus in the absence of sign restrictions, the priors for h and g

conditional on Ω are both Cauchy variables with scale p22/p11 and location p21/p11, with a

perfect correlation between h and g characterized by (42) and (43).

Recalling that a Cauchy distribution is a Student t with location zero, unit scale, and one

degree of freedom, the implicit prior associated with the conventional approach is analogous

to equations (34)-(35) with c = 0, σ = 1, ν = 1.

11 Actually, Gubner shows this for θ ∼ U(−π/2, π/2), but the tangent function simply replicates its values
for [−π/2, π/2] when evaluated over [−π, π].
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Note furthermore that when p21 < 0, g will be zero at the points θ1 and θ2 ∈ [−π, π] for

which cot θ = p21/p22; see Figure 4. Nonnegative g then requires θ ∈ (θ1, 0) or θ ∈ (θ2, π).

As θ ranges over these intervals, g can take on any value between 0 and∞. But at the lower

end of either, h would be given by

hL =
p21
p11

+
p22
p11

tan θi =
p21
p11

+
p22
p11

p22
p21

=
p221 + p222
p11p21

=
ω22
ω12

with the last equality following from (39). At the other end, since tan(0) = tan(π) = 0, the

largest value of h is characterized by

hH =
p21
p11

+
p22
p11

× 0 =
p21
p11

=
p21p11
p211

=
ω12
ω11

.

These will be recognized as exactly the same values for xL and xH that were derived in

the previous subsection. In other words, although the traditional methodology is not usually

expressed in terms of an explicit prior and posterior distribution, it can be characterized in

exactly those terms. When ω12 < 0, the prior for g conditional on Ω is Cauchy with location

parameter xH = p21/p11 and scale parameter p22/p11, truncated by g > 0, while the prior

for h conditional on Ω is Cauchy with those same location and scale parameters truncated

by xL < h < xH .

We applied the traditional sign-restriction methodology (detailed in Appendix E) to

the postwar data set on inflation and output described above. The simulated posterior

distribution for the date zero impacts is plotted using solid bars, while the Cauchy priors

just described are shown as smooth curves in Figure 5. These will be recognized as similar

to some of the shapes found numerically for posterior distributions in a 5-variable VAR
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analyzed by Arias, Rubio-Ramírez, and Waggoner (2013), though these authors did not

note the connection to the implicit prior nor provide the theory for why this is what would

be found from the method.

Another implication of these analytical results is that it would generally be necessary to

report the posterior medians rather than posterior means if the uniform Haar prior is used

because the posterior mean for the impact of a demand shock does not exist. We can also

see analytically the results from applying the traditional methodology when the correlation

between the OLS residuals is zero. In this case the posterior distribution for the time-zero

impact of either a supply or a demand shock is simply a Cauchy distribution centered at

zero, truncated to have the correct sign, and scaled by the ratio of the standard deviation

of quantity surprises to price surprises.

4.2 Posterior distributions for other objects.

Up to this point in the section we have assumed that the researcher is interested in magni-

tudes like the supply elasticity α. Suppose instead that we were interested in the parameter

ζ1 = α/(α − β), which represents the effect on equilibrium quantity of a horizontal shift

of the demand curve by an amount ∆qt = 1%. Note that the sign restrictions α ≥ 0 and

β ≤ 0 impose the bounds 0 ≤ ζ1 ≤ 1; a shift of the demand curve by 1% will in equilibrium

result in an increase in quantity of less than 1%. Thus whereas the asymptotic posterior

distribution for α would range over (0,∞) if the correlation between the VAR residuals εpt

and εqt is negative, the posterior distribution for ζ1 is bounded by definition. However, this

does not mean that the data are any more informative about ζ1 than they were about α
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or β. Given prior beliefs about α and β, the data will asymptotically restrict the posterior

distribution of (α, β) within a certain region. But within that region, the posterior distri-

bution for (α, β) is simply a constant times the prior. Likewise, the posterior distribution

of ζ1 is simply a constant times the prior distribution for ζ1 that is implied by the prior for

(α, β) over the restricted region. Inference about magnitudes like ζ1 is essentially the case

explored by Caldara and Kamps (2012) in their analysis of the multiplier effects of fiscal

policy.

Another magnitude that researchers often report is the effect on price of a one-standard-

deviation shock to ust .
12 We can see from (41) that conditional on Ω, the prior for this

magnitude that is implied by the uniform Haar prior is given by ζ2 = p11 cos θ where p11 is

the square root of the variance of εpt and θ ∼ U(−π, π). Here again the proposed magnitude

of interest ζ2 is bounded by definition, since the component of the variance of ε
p
t that is

attributed to ust cannot exceed the total variance of ε
p
t . Asymptotically the data will inform

perfectly about p11 and restrict θ to lie in A = {(θ1, 0)∪(θ2, π)}. But within A, the inference

about ζ2 is simply going to reflect prior beliefs about θ. The posterior distribution of θ will

be completely flat throughout the set A.

This result helps shed light on the approach suggested by Inoue and Kilian (2013). They

proposed using the posterior mode of a magnitude like ζ2 as the point estimate to be reported.

Note that even though the posterior for θ is completely flat, the posterior for cos θ has a

12 Fry and Pagan (2011, p. 955) discussed why we might have more hope of saying something meaningful
about the effects of one-standard-deviation shocks than about the supply and demand elasticities α and β,
but also explained why the effect of a one-standard-deviation shock is usually not the magnitude we would
be interested in.
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unique maximum. However, given Ω, the location of this maximum, and indeed the shape

of the posterior over its range, is determined by the shape of the prior. Although the prior

may seem uninformative about θ, the same prior has a clear preference for values of ζ2 near

p11. Our suggestion is that rather than pretend that our priors have had no influence on

the reported results, it would be better for researchers to defend their prior beliefs explicitly,

and clarify how those prior beliefs have ended up influencing the conclusions. We illustrate

how this can be done in the following section.

5 Bayesian inference in a 3-variable macro model.

5.1 Model description.

Here we illustrate these methods using a commonly studied three-variable macroeconomic

model.13 The three quarterly variables are summarized by the vector yt = (yt, πt, rt)
′, where

yt denotes the output gap (100 times the log difference between observed and potential real

GDP as estimated by the Congressional Budget Office), πt the inflation rate (measured by

100 times the year-over-year log change in the personal consumption expenditures deflator),

and rt the nominal interest rate (measured by the average value for the fed funds rate over

the quarter). The system consists of a Phillips Curve,

yt = ks + αsπt + [bs]′ xt−1 + ust , (44)

13 Equations (44)-(46) can be motivated from the 3-variable macro models studied by Rotemberg and
Woodford (1997), Del Negro and Schorfheide (2004), Giordani (2004), Benati and Surico (2009), and Rubio-
Ramirez, Waggoner, and Zha (2010). Appendix F details the relation between our parameterization and
that in Benati and Surico (2009).
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an aggregate demand equation,

yt = kd + βdπt + γdrt +


bd

�′
xt−1 + udt , (45)

and a Taylor rule for monetary policy,

rt = km + ψyyt + ψππt + [bm]′ xt−1 + umt , (46)

where xt−1 = (y′t−1,y
′
t−2, ...,y

′
t−m, 1)

′ and ust denotes a shock to supply, u
d
t the demand shock,

and umt the monetary policy shock. This system will be recognized as a special case of the

general framework (1) studied in Section 2 with

A =






1 −αs 0

1 −βd −γd

−ψy −ψπ 1






. (47)

Many macroeconomists have strong prior beliefs about the values of key parameters in a

system like (44)-(46), and indeed many studies simply assume particular numerical values for

purposes of quantitative analysis. The modes of the prior distributions used in our study for

elements of the contemporaneous coefficients in A (that is, the values for c in equation (36))

are summarized in Table 1. For the coefficients that characterize the Fed’s response to the

output gap (ψy) and inflation (ψπ) our prior modes correspond to the values from Taylor’s

(1993) original article (0.5 and 1.5, respectively). We further impose the restriction that both

these Taylor Rule parameters must be nonnegative. For the slope of the aggregate supply

curve, our prior for αs has mode at 2, consistent with the prior for this parameter assumed

by Lubik and Schorfheide (2004). Our parameterization for the aggregate demand curve
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can be viewed as the reduced form of a forward-looking DSGE model in which aggregate

demand responds negatively to the ex ante real interest rate. This motivated our choice

of a prior mode of 0.75 for βd and −1 for γd.14 For each of the five contemporaneous

coefficients, we set the scale parameter σ = 0.3 and the degrees of freedom ν = 2. The

priors thus have fat tails with infinite variance but finite mean, with much of the mass in a

neighborhood around c± 0.6. These prior densities are plotted as the red curves in Figure

6.

Our priors for the variances of the structural shocks are based on the mode (denoted

A∗) of our prior distribution for A combined with the scales of individual innovations as

summarized by univariate autoregressions fit to each individual series. Specifically, if êit

denotes the residual of a fourth-order autoregression for series i and S the sample variance

matrix of these univariate residuals (sij = T−1
�T

t=1 êitêjt), we set κi/τ i (the prior mean for

d−1ii ) equal to the reciprocal of the ith diagonal element of A
∗SA∗′. We put only modest

weight on these prior beliefs by setting each κi = 2.15

Our choice of priors on the lagged coefficients (summarized in equation (55)) are similar

to the values suggested by Doan (2013). We set λ1 = 1 (which governs how quickly the

prior for lagged coefficients tightens to zero as the lag ℓ increases) , λ2 = 0.7 (which governs

14 If the reduced form for output and inflation behave approximately like univariate AR(1) processes with
autoregressive coefficient φ = 0.75, then dy = gπ = φ and all other parameters in (60) and (61) would be

zero. This leads to a prior belief from equation (56) that βd would be around φσ−1/(1−φη) and γd around
−σ−1/(1 − φη). Benati and Surico (2009) used a prior mode of 0.25 for η (which is represented by γ in
their equation (3)) while Lubik and Schorfheide (2004) in their equation (1) assumed η = 1. Both these
studies (and most others) have taken the σ (the intertemporal elasticity of substitution) to be 2. Using
η = 2/3, φ = 0.75, and σ = 2 gives predicted values for γd of −1 and βd of 0.75.
15 Note from equation (13) that our prior is thus given the same weight as 4 observations out of a sample

of size T = 91.
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how much we shrink coefficients other than own lags to zero), and λ3 = 100 (which makes

the prior on the constant term essentially irrelevant). For our base case we set λ0, the

parameter controlling the overall tightness of the prior, to 0.2.

One way to visualize these priors is to consider what they imply for the impact of a given

structural shock at time t on the value of the system at date t+ s as in (25),

∂yt+s
∂u′t

= ΨsA
−1. (48)

The traditional approach would impose the restriction that the impacts of structural shocks

have particular signs for a subset of horizons s = 0, 1, 2... By contrast, our approach calls

on the researcher to specify priors for A, D, and B and see what these imply for the likely

impact of structural shocks at any horizon. Our priors imply a high probability that the

initial impacts have the expected signs, but since this probability is less than one, also allow

the data to override our prior beliefs for those objects about which the data are informative.

The top panel of Table 2 summarizes the probability implied by our priors that the

impacts of the structural shocks given in (48) are initially positive (s = 0). A demand

shock is viewed by our priors as extremely likely to increase output, inflation, and the

interest rate, and a contractionary monetary shock to increase the interest rate and reduce

output and inflation. A favorable supply shock almost surely decreases the current inflation

and interest rate and with high probability is also associated with higher output.

Table 2 also reports the weight that our prior puts on the signs of structural impacts

at horizons 1 and 2. The rate at which probabilities decay towards 0.5 as we increase s is

governed by the tightness of the prior for the persistence parameters λk associated with the
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Minnesota prior along with prior beliefs about the size of structural shocks as summarized

by (κi, τ i). As seen in Table 2, our use of a relatively tight Minnesota prior (λ0 = 0.2)

implies almost as much confidence in the signs of ∂yt+1/∂u
′
t and ∂yt+2/∂u

′
t as for ∂yt/∂u

′
t.

5.2 Empirical results.

We used quarterly data on yt with regressions estimated over t = 1986:Q1 to 2008:Q3 to

calculate posterior distributions for parameters using the algorithm described in Appendix B.

Posterior distributions for the 5 contemporaneous coefficients are plotted as solid histograms

in Figure 6. The data turn out to be highly informative about the values of ψπ and βd,

cause modest revisions in our beliefs about ψy, and are relatively uninformative about αs

and γd. To understand what drives these results, notice that for any given values of ψy and

ψπ, the maximum likelihood estimate of αs could be found from an IV regression of ε̂yt on

ε̂πt using (ε̂
r
t − ψyε̂yt − ψπε̂πt ) as instrument:

α̂(ψy, ψπ) =
ω̂13 − ψyω̂11 − ψπω̂12
ω̂23 − ψyω̂21 − ψπω̂22

(49)

for ω̂ij the row i, column j element of

Ω̂ =






0.1835 −0.0137 0.0524

−0.0137 0.1228 0.0280

0.0524 0.0280 0.0972






.

Figure 7 plots possible values for ψy on the horizontal axis and ψπ on the vertical axis.

The dashed line identifies combinations of ψy and ψπ for which the numerator of (49) would

be zero, that is, plots the line ω̂13 − ψyω̂11 − ψπω̂12 = 0. This line could alternatively be
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described as combinations of ψy and ψπ for which the structural monetary shock (umt =

εrt − ψyεyt − ψπεπt ) would be uncorrelated with the reduced-form residual for output (εyt )

and therefore for which the MLE of αs (the value that would make εyt − αsεπt uncorrelated

with umt ) is in fact zero. The beaded line plots combinations of ψy and ψπ for which the

denominator of (49) is zero, namely ω̂23 − ψyω̂21 − ψπω̂22 = 0. These are values that would

make the structural monetary shock uncorrelated with the reduced-form residual for inflation

and would imply an infinite value for the MLE of αs.

In order for αs to be positive, the numerator and denominator of (49) would have to be

of the same sign. Since ω̂12 < 0, the numerator is positive for any pair (ψy, ψπ) above the

dashed line and negative for any point below the dashed line. The denominator of (49) is

positive for any point below the beaded line. Thus in order to satisfy αs > 0, the values of

ψy and ψπ would have to be in a shaded region of Figure 7, either both above the dashed

line and below the beaded (the lower left quadrant of Figure 7) or below the dashed and

above the beaded (the upper right quadrant). As one moves from the dashed line to the

beaded line within a shaded region, the MLE of αs would vary from 0 to +∞. Thus if we

had only the sign restrictions on ψy, ψπ, and αs, the data would rule out combinations for

which one of the ψ’s is small and the other large but put no restrictions on αs.

The data’s informativeness about βd comes from interaction with the priors. Given the

maximum likelihood estimate α̂(ψy, ψπ) associated with any specified (ψy, ψπ), we can find

the MLE for βd and γd associated with that (ψy, ψπ) by an IV regression of ε̂yt on ε̂
π
t and ε̂

r
t
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using (ε̂yt − α̂(ψy, ψπ)) and (ε̂rt − ψyε̂yt − ψπε̂πt ) as instruments:





β̂(ψy, ψπ)

γ̂(ψy, ψπ)




 =






[ω̂12 − α̂(ψy, ψπ)ω̂22] [ω̂13 − α̂(ψy, ψπ)ω̂23]

[ω̂32 − ψyω̂12 − ψπω̂22] [ω̂33 − ψyω̂13 − ψπω̂23]






−1

×






[ω̂11 − α̂(ψy, ψπ)ω̂12]

[ω̂31 − ψyω̂11 − ψπω̂21]




 . (50)

One can use these expressions to calculate combinations of ψy and ψπ that would imply a

negative value for βd. This corresponds to the region below the hatched curve and above

the solid curve in Figure 7, and appears as dark shaded regions provided that the conditions

for αs > 0 are satisfied. There are a number of points at which the matrix in (50) becomes

singular and no values for βd and γd could achieve the same fit as the reduced-form VAR.

As one crosses these points, signs of key relations flip and the markers denoting a given curve

changes status from solid (the lower bound on the region) to hatched (the upper bound).

It turns out that there are very few values of ψy and ψπ below 0.6 for which both αs > 0

(as required) and βd > 0 (as expected by our prior beliefs). If we had imposed a dogmatic

prior that required βd > 0, the set of maximum likelihood estimates for ψy and ψπ would

consist of the light shaded areas in Figure 7. These define a disjoint region with a very odd

topography most of whose values are deemed by our prior to be relatively unlikely. This

figure highlights a problem with insisting that a parameter like βd has to be positive. By

contrast, our approach nudges the posterior in the direction of favoring the light shaded

regions, but also weighs this against the prior plausibility of the values for αs, ψy, and ψπ

that these parameter values would imply. Since these are regarded as also unlikely a priori,
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our posterior inference ends up putting considerable posterior probability on the dark shaded

regions in Figure 7 for which βd < 0. In other words, contrary to our prior expectation,

there is some evidence in the data that higher inflation lowers aggregate demand even with

the nominal interest rate held constant.

Table 2 summarizes the posterior probabilities that a specified structural shock results

in an increase in the indicated variable at horizons s = 0, 1, 2. The posterior distribution is

more tightly adhering to the expected signs of these impacts than was our prior distribution.

A favorable supply shock is virtually certain to raise output and lower inflation, while a

demand shock is virtually certain to raise all three variables. A monetary contraction is

extremely likely to raise interest rates and lower output and inflation on impact, though we

would have less than 95% confidence that the negative effect on output would last as long

as two quarters.

Impulse-response functions are plotted in Figure 8. The solid lines plot the median of the

posterior distribution for any given horizon. This would correspond to the optimal inference

about the impact at that horizon if the researcher’s loss function is based on absolute value.

Note that with informative priors, there is no ambiguity about reporting these solid lines as

optimal point estimates despite the fact that the model is only set identified. The shaded

regions in Figure 8 represent 95% posterior credibility regions.

The first two columns of Figure 8 summarize the effects of supply and demand shocks,

both of which are quite persistent in our baseline simulation with posterior confidence about

the signs of effects lasting beyond a year. The third column in Figure 8 summarizes the
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effect of a one-unit increase in the monetary policy shock umt on each of the three variables.

Note that if there were no immediate effects of the policy on output or inflation, the fed

funds rate would rise by 1% as a result of a monetary policy shock of one unit. However, our

specification assumes that higher interest rates cause output and inflation to fall, and these

feed back into the interest rate. The Taylor Rule equation shifts up by 100 basis points,

but within the month the economy moves along the new Taylor Rule equation with output

falling 0.38% and inflation falling about 0.25%, as a result of which in equilibrium the fed

funds rate is only about 65 basis points higher in the immediate response to the shock. The

output effect declines relatively quickly in the quarters following the shock, with the point

estimate actually switching signs after 5 quarters.

We also can explore the importance of prior beliefs about the persistence of shocks by

relaxing the tightness of the Minnesota prior. We can represent the complete absence

of information about the persistence of shocks by setting the overall tightness parameter

λ0 = 109. Impulse-response functions for this alternative specification of prior beliefs are

plotted in Figure 9. In the absence of prior information about the persistence of shocks,

the confidence intervals associated with the impulse-response functions become somewhat

wider, though the overall conclusions are very similar to those for our baseline specification.

This is consistent with the conclusion of many users of the conventional sign restriction

methodology— prior beliefs about the effect of shocks at longer horizons can help improve the

quality of overall inference. However, representing this information in the form suggested

here as smooth distributions over A, D and B offers a number of advantages over the
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conventional sign-restriction approach.

6 Conclusion.

One reason that Bayesian methods are not more widely used in economics is the desire to

let the data speak for themselves, uncolored by subjective or prior beliefs. Unfortunately,

that laudable goal is not really achievable— some reliance on prior understanding is necessary

in order to make any structural interpretation of observed data. The way this is done in

most studies is to insist that we know with certainty some of the parameters about which

a reasonable person would entertain some doubt, while claiming to know nothing at all a

priori about other details about which we in fact have at least some information. Moreover,

the process by which the imposed restrictions are arrived at in practice has often amounted

to calculating impulse-response functions such as those in Figure 8 and verifying that they

“look reasonable.”

The methods proposed here provide a formal device for making use of prior information

which has always been implicit, although often not acknowledged, in earlier efforts to draw

structural inference from vector autoregressions. Explicitly specifying prior beliefs and then

reporting the relation between prior and posterior distributions gives researchers a device

with which to summarize more clearly those features of interest for which the data are

informative and those for which they are not.
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Appendix

A. Proof of Proposition 1.

The likelihood (10) can be written

p(YT |A,D,B) = (2π)−Tn/2|det(A)|T |D|−T/2
�n

i=1
exp

�
−

T�

t=1

(a′iyt − b′ixt−1)2
2dii

�
.

If we define Pi to be the Cholesky factor of M
−1
i = PiP

′
i, X

∗
i = Pi, and y

∗
i = Pimi, the

prior for bi in (8) can be written

p(bi|D,A) =
1

(2π)k/2|diiMi|1/2
exp

�
−(y∗i −X∗

ibi)
′(y∗i −X∗

ibi)

2dii

�
.

Comparing the above two equations we see that, conditional on A, prior information about

bi can be combined with the information in the data by regressing Ỹi on X̃i:

Ỹi
[(T+k)×1]

=






y′1ai

...

y′Tai

Pimi






X̃i
[(T+k)×k]

=






x′0

...

x′T−1

Pi






m∗
i =

	
X̃′
iX̃i


−1
X̃′
iỸi (51)

=
	�T

t=1 xt−1x
′
t−1 +M

−1
i


−1 	�T
t=1 xt−1y

′
t +M

−1
i η

′


ai.

43



From the property that the OLS residuals Ỹi− X̃im
∗
i are orthogonal to X̃i, we further know

(Ỹi − X̃ibi)
′(Ỹi − X̃ibi) = (Ỹi − X̃im

∗
i + X̃im

∗
i − X̃ibi)

′(Ỹi − X̃im
∗
i + X̃im

∗
i − X̃ibi)

= (Ỹi − X̃im
∗
i )
′(Ỹi − X̃im

∗
i ) + (bi −m∗

i )
′X̃′

iX̃i(bi −m∗
i )

= Ỹ′
iỸi − Ỹ′

iX̃i(X̃
′
iX̃i)

−1X̃′
iỸi + (bi −m∗

i )
′(M∗

i )
−1(bi −m∗

i )

= Ta′iΩ̂
∗
iTai + (bi −m∗

i )
′(M∗

i )
−1(bi −m∗

i ).

The product of the likelihood (10) with the prior for B (7) can thus be written

p(B|A,D)p(YT |A,D,B) = (2π)−Tn/2|det(A)|T |D|−T/2 × (52)

�n
i=1

1

(2π)k/2|diiMi|1/2
exp

�

−Ta′iΩ̂
∗
iTai + (bi −m∗

i )
′ (M∗

i )
−1 (bi −m∗

i )

2dii

�

.

Multiplying (52) by the priors for A and D and rearranging gives

p(YT ,A,D,B) = p(A)p(D|A)p(B|A,D)p(YT |A,D,B)

= p(A)(2π)−Tn/2|det(A)|T
n�

i=1

�
d
−T/2
ii

τκii
Γ(κi)

Γ(κ∗i )

(τ ∗i )
κ∗i

(τ ∗i )
κ∗i

Γ(κ∗i )
(d−1ii )

κi−1 exp(−τ∗i d−1ii )×

|M∗
i |1/2

|Mi|1/2
1

(2π)k/2|diiM∗
i |1/2

exp

�

−(bi −m∗
i )
′ (M∗

i )
−1 (bi −m∗

i )

2dii

�!

= p(A)(2π)−Tn/2|det(A)|T ×
n�

i=1

� |M∗
i |1/2

|Mi|1/2
τκii
Γ(κi)

Γ(κ∗i )

(τ ∗i )
κ∗i

�
γ(d−1ii ;κ

∗
i , τ

∗
i )φ(bi;m

∗
i , diiM

∗
i ). (53)

Note that the product in (53) can be interpreted as

p(YT ,A,D,B) = p(YT )p(A|YT )p(D|A,YT )p(B|A,D,YT ).

Thus the posterior p(B|A,D,YT ) is the product of N(m∗
i , diiM

∗
i ) densities, the posterior
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p(D|A,YT ) the product of Γ(κ
∗
i , τ

∗
i ) densities, and

p(YT )p(A|YT ) = p(A)(2π)−Tn/2| det(A)|T
n�

i=1

� |M∗
i |1/2

|Mi|1/2
τκii
Γ(κi)

Γ(κ∗i )

(τ∗i )
κ∗i

�

from which

p(A|YT ) ∝
p(A)|det(A)|T

�n
i=1(τ i + Ta′iΩ̂

∗
iTai/2)

κi+T/2
.

Since Ω̂∗T is not a function of A, we can write the above result in an equivalent form to

facilitate numerical calculation and interpretation:

p(A|YT ) ∝
p(A)|det(A)|T |Ω̂∗T |T/2�n

i=1[(2τ i/T ) + a
′
iΩ̂

∗
iTai]

κi+T/2
=

p(A)[det(AΩ̂
∗
TA

′)]T/2
�n
i=1[(2τ i/T ) + a

′
iΩ̂

∗
iTai]

κi+T/2

as claimed in equation (17). Note that we could replace Ω̂∗T in the numerator with Ω̂T , In,

or any matrix not depending on unknown parameters, with any such replacement simply

changing the definition of kT in (17). Our use of Ω̂
∗
T in the numerator helps the target density

(which omits kT ) behave better numerically for large T , as will be seen in the asymptotic

analysis below.

B. Numerical algorithm for drawing from the posterior distribution in Propo-

sition 1.16

We use a random-walk Metropolis Hastings algorithm to draw from the posterior distri-

bution of A and use the known closed-form expressions to generate draws from D|A,YT

and B|A,D,YT . We first calculate Ω̂
∗
iT from (15) and

M∗
i =

	�T
t=1 xt−1x

′
t−1 +M

−1
i


−1

16 Code to implement this procedure is available at http://econweb.ucsd.edu/~jhamilton/BHcode.zip.
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Φ̂∗i =M
∗
i

	�T
t=1 xt−1y

′
t +M

−1
i η

′



for i = 1, ..., n and η the prior beliefs as specified for example in (29). Note that these

depend solely on the data and fixed parameters, so only need be calculated once prior to

any iterations. Define the target function to be

p̃(A) = log p(A) + (T/2) log[det(AΩ̂
∗
TA

′)]−
"n

i=1
(κi + T/2) log[(2τ i/T ) + a

′
iΩ̂

∗
iTai].

Start with an arbitrary initial value for A(0), drawn for example from the prior p(A).

Next, for ℓ = 1, ...,D, we generate a candidate draw (denoted Ã(ℓ)) from a proposal density

q(A|A(ℓ−1)); in our applications we used a random-walk Metropolis Hastings algorithm:

q(A|A(ℓ−1)) = φ(vec∗(A);vec∗(A(ℓ−1)), ξIc).

Here vec∗(A) denotes the vector consisting of the unknown elements of A, c the number of

unknown elements, and φ(x;µ,Ω) indicates the multivariate Normal density with mean µ

and variance Ω evaluated at x, while ξ is a tuning parameter to achieve a target acceptance

rate of around 35%. We then accept the candidate draw for A (setting A(ℓ) = Ã(ℓ)) with

probability

min
�
exp

�
p̃(Ã(ℓ))− p̃(A(ℓ−1))

�
, 1

�
.

If we fail to accept the draw, we set A(ℓ) = A(ℓ−1).

We then generate a draw for
�
d
(ℓ)
ii

�−1
from independent Γ(κi+ T/2, τ i+ Ta

(ℓ)′
i Ω̂∗iTa

(ℓ)
i /2)

densities and bi fromN(Φ̂∗ia
(ℓ)
i , d

(ℓ)
ii M

∗
i ) densities for i = 1, ..., n. The triplet {A(ℓ),D(ℓ),B(ℓ)}

represents a single draw from p(A,D,B|YT ) after we throw out the first 1,000,000 burn-in

draws. The figures in the text are based on 1,000,000 post burn-in draws.
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C. Proof of Proposition 2.

(i) E[(bi −m∗
i )(bi −m∗

i )
′|A,d11, ..., dnn,YT ] =

	�T
t=1 xt−1x

′
t−1 +M

−1
i


−1

= T−1
	
T−1

�T
t=1 xt−1x

′
t−1 + T−1M−1

i


−1

p→ 0

and

m∗
i =

	�T
t=1 xt−1x

′
t−1 +M

−1
i


−1 	�T
t=1 xt−1y

′
t +M

−1
i η



ai

=
	
T−1

�T
t=1 xt−1x

′
t−1 + T−1M−1

i


−1 	
T−1

�T
t=1 xt−1y

′
t + T−1M−1

i η


ai

p→ Φ′0ai.

Hence

B =






b′1

...

b′n






p→ AΦ0.

(ii) Ω̂∗iT = T−1
�T

t=1 yty
′
t + T−1ηM−1

i η
′ −

	
T−1

�T
t=1 ytx

′
t−1 + T−1ηM−1

i



×

	
T−1

�T
t=1 xt−1x

′
t−1 + T−1M−1

i


−1 	
T−1

�T
t=1 xt−1y

′
t + T−1M−1

i η
′



p→ Ω0.
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(iii) E[(d−1ii − κ∗i /τ
∗
i )
2|YT ] = κ∗i /τ

∗2
i

=
κi + (T/2)

�
τ i + (Ta′iΩ̂

∗
iTai/2)

�2

=
(κi/T ) + (1/2)

T
�
(τ i/T ) + (a′iΩ̂

∗
iTai/2)

�2

p→ 0

and

κ∗i
τ∗i

p→ (1/2)

a′iΩ0ai/2
.

(iv) We first demonstrate that ifMi =M for all i,

Prob{[A /∈ Hδ(Ω̂
∗
T )]|YT} → 0 ∀δ > 0. (54)

To see this, let pij(A,Ω) denote the row i, column j element of P(A,Ω) for P(A,Ω) the

lower-triangular Cholesky factor P(A,Ω)[P(A,Ω)]′ = AΩA′. Note that

|AΩA′| = p211(A,Ω)p
2
22(A,Ω) · · · p2nn(A,Ω)

a′iΩai = p2i1(A,Ω) + p2i2(A,Ω) + · · ·+ p2ii(A,Ω).

IfMi =M, then Ω̂∗iT = Ω̂∗T and

p(A|YT ) =
kTp(A)[det(AΩ̂

∗
TA

′)]T/2
�n
i=1[(2τ i/T ) + a

′
iΩ̂

∗
Tai]

κi+T/2

=
kTp(A)[p

2
11(A, Ω̂

∗
T )p

2
22(A, Ω̂

∗
T ) · · · p2nn(A, Ω̂

∗
T )]

T/2

�n
i=1[(2τ i/T ) + a

′
iΩ̂

∗
Tai]

κi

�
(2τ i/T ) +

�i
j=1 p

2
ij(A, Ω̂

∗
T )

�T/2 .
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Note that for allA /∈ Hδ(Ω
∗
T ), ∃ j∗ < i∗ such that

�
pi∗j∗(A, Ω̂

∗
T )

�2
≥ δ∗ for δ∗ = 2δ/[n(n−1)].

Thus

Prob[A /∈ Hδ(Ω̂
∗
T )|YT ] =

#

A/∈Hδ(Ω̂∗T )

kTp(A)[p
2
11(A, Ω̂

∗
T )p

2
22(A, Ω̂

∗
T ) · · · p2nn(A, Ω̂

∗
T )]

T/2

�n
i=1[(2τ i/T ) + a

′
iΩ̂

∗
Tai]

κi

�
(2τ i/T ) +

�i
j=1 p

2
ij(A, Ω̂

∗
T )

�T/2dA

≤
#

A/∈Hδ(Ω̂∗T )

�
kTp(A)�n

i=1[(2τ i/T ) + a
′
iΩ̂

∗
Tai]

κi
×

[p211(A, Ω̂
∗
T )p

2
22(A, Ω̂

∗
T ) · · · p2nn(A, Ω̂

∗
T )]

T/2

�n
i=1[p

2
11(A, Ω̂

∗
T )]

T/2 · · · [δ∗ + p2i∗i∗(A, Ω̂
∗
T )]

T/2 · · · [p2nn(A, Ω̂
∗
T )]

T/2

�

dA

=

#

A/∈Hδ(Ω̂∗T )

kTp(A)�n
i=1[(2τ i/T ) + a

′
iΩ̂

∗
Tai]

κi

�
p2i∗i∗(A, Ω̂

∗
T )

δ∗ + p2i∗i∗(A, Ω̂
∗
T )

�T/2
dA

which goes to 0 as T →∞.

Note next that

Prob{[A /∈ Hδ(Ω0)]|YT} = Prob
��n

i=2

�i−1
j=1 [pij(A,Ω0)]

2 > δ
�
.

But

[pij(A,Ω0)]
2 =

�
pij(A, Ω̂

∗
T ) +

�
pij(A,Ω0)− pij(A, Ω̂

∗
T )

��2

≤ 2
�
pij(A, Ω̂

∗
T )

�2
+ 2

�
pij(A,Ω0)− pij(A, Ω̂

∗
T )

�2
.

Hence

Prob{[A /∈ Hδ(Ω0)]|YT} ≤ Prob{[(A1T +A2T ) > δ]|YT}

A1T = 2
�n

i=2

�i−1
j=1

�
pij(A, Ω̂

∗
T )

�2

A2T = 2
�n

i=2

�i−1
j=1

�
pij(A,Ω0)− pij(A, Ω̂

∗
T )

�2
.
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Given any ε > 0 and δ > 0, by virtue of (54) and result (ii) of Proposition 2, there exists a

T0 such that Prob{[A1T > δ/2]|YT} < ε/2 and Prob{[A2T > δ/2]|YT} < ε/2 for all T ≥ T0,

establishing that Prob{[(A1T +A2T ) > δ]|YT} < ε as claimed.

(v) When κi = τ i = 0 andMi =M, we have Ω̂∗iT = Ω̂∗T and

p(A|YT ) =
kTp(A)[det(AΩ̂

∗
TA

′)]T/2
�n
i=1[a

′
iΩ̂

∗
Tai]

T/2

which equals kTp(A) when evaluated at any A for which AΩ̂
∗
TA

′ is diagonal.

D. Informative priors on lagged coefficients.

Doan, Litterman and Sims (1984) suggested that we should have greater confidence in

our expectation that coefficients on higher lags are zero, represented by smaller diagonal

elements forMi associated with higher lags. For the rth element of bi, let ℓ(r) denote the

lag order associated with that element,

ℓ(r) =






1 for r = 1, ..., n

2 for r = n+ 1, ..., 2n

...
...

m for r = n(r − 1), ...,mn

,

and let j(r) denote the explanatory variable associated with that coefficient,

j(r) =






1 for r = 1, n+ 1, ..., n(m− 1) + 1

2 for r = 2, n+ 2, ..., n(m− 1) + 2

...
...

n for r = n− 1, 2n− 1, ...,mn

,
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Let
√
sjj denote the estimated standard deviation of a univariate mth-order autoregression

fit to variable j, and Mi,rr the row r, column r element ofMi. We then take
17

$
Mi,rr =






λ0√
sii[ℓ(r)]λ1

if i = j(r) and r = 1, ..., k − 1

λ0λ2√
sj(r),j(r)[ℓ(r)]

λ1
if i �= j(r) and r = 1, ..., k − 1

λ0λ3 for r = k

. (55)

Here λ0 summarizes the overall confidence in the prior (with smaller λ0 corresponding to

greater weight given to the random walk expectation), λ1 governs how much more confident

we are that higher coefficients are zero (with a value of λ1 = 0 giving all lags equal weight),

λ2 ≤ 1 is a parameter placing greater confidence in the restriction that coefficients other

than the own lags yi,t−ℓ are zero, and λ3 is a separate parameter governing the tightness of

the prior for the constant term, with all λk ≥ 0.

E. Algorithm using the uniform Haar prior.

Here we describe the sign-restriction algorithm developed by Rubio-Ramírez, Waggoner,

and Zha (2010) that was used to generate the histograms in Figure 5.

Let K denote an n × n matrix whose elements are random draws from independent

standard Normal distributions. Take the QR decomposition of K such that K = Q′ · R

where R is an upper triangular matrix whose diagonal elements have been normalized to

be positive and Q is an orthogonal matrix (QQ′= In). Let P̂ be the Cholesky factor of

the reduced-form variance-covariance matrix Ω̂ (so that Ω̂ = P̂P̂
′
) and generate a candidate

impact matrix H̃ = P̂Q. Instead of checking the sign restrictions directly for H̃, normalize

17 Doan (2013, p. UG-249) writes prior standard deviations as
√
sii times the expressions in (55) to

accommodate changes in the scale of variable i. However, in our parameterization this adjustment for scale
is accommodated automatically by writing the variance of bi as diiMi.
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H̃ by dividing each column by its first element as a way to account for both positive and

negative shocks which increases the efficiency of the algorithm. Given that in sign-identified

VARs the ordering of the variables does not determine which shock is contained in which

column, each column needs to be checked for the sign pattern associated with one particular

shock. If the normalized H̃ satisfies all the sign restrictions jointly, keep the draw; otherwise

discard it.

F. A new-Keynesian interpretation of the VAR in Section 5.

Benati and Surico (2009) used the following New Keynesian model:

yt = ηyt+1|t + (1− η)yt−1 − σ−1(rt − πt+1|t) + εyt (56)

εyt = ρyεy,t−1 + ε̃yt (57)

πt = ξπt+1|t + αsπt−1 + κsyt + ε̃πt (58)

rt = ρrt−1 + ψyyt + ψππt + εrt (59)

εrt = ρrεr,t−1 + ε̃rt

where (ε̃yt, ε̃πt, ε̃rt)
′ is vector white noise and xt+1|t denotes the rational expectation of xt+1

formed on the basis of information available at time t. If we operate on (59) by (1 − ρrL)

for L the lag operator, we obtain an equation of the form of (46) with umt = ε̃rt, and in the

special case of a backward-looking Phillips Curve (ξ = 0), equation (58) is immediately in

the form of (44) with κs = 1/αs. Benati and Surico show that the rational-expectations

solution to their system takes the form

yt+1|t = dyyt + dππt + drrt + d
′yt−1 (60)
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πt+1|t = gyyt + gππt + grrt + g
′yt−1. (61)

Substituting (60) and (61) into (56) and rearranging gives an expression of the form of (45).

53



References

Arias, Jonas E., Juan F. Rubio-Ramírez, and Daniel F. Waggoner (2013). "Algorithm

for Inference with Sign and Zero Restrictions," working paper, Duke University.

Benati, Luca, and Paolo Surico (2009). "VAR Analysis and the Great Moderation,"

American Economic Review 99: 1636-1652.

Caldara, Dario and Christophe Kamps (2012). "The Analytics of SVARs: A Unified

Framework to Measure Fiscal Multipliers," working paper, Federal Reserve Board.

Canova, Fabio, and Gianni De Nicoló (2002). "Monetary Disturbances Matter for Busi-

ness Fluctuations in the G-7," Journal of Monetary Economics 49: 1131-1159.

Canova, Fabio, and Matthias Paustian (2011). "Business Cycle Measurement with Some

Theory," Journal of Monetary Economics 58: 345-361.

Doan, Thomas, Robert B. Litterman, and Christopher A. Sims (1984). "Forecasting and

Conditional Projection Using Realistic Prior Distributions," Econometric Reviews 3: 1-100.

Doan, Thomas (2013). RATS User’s Guide, Version 8.2, www.estima.com.

Del Negro, Marco, and Frank Schorfheide (2004). "Priors from General Equilibrium

Models for Vars," International Economic Review 45(2): 643-673.

Elliott, Graham, Ulrich K. Müller, and Mark W. Watson (2012). "Nearly Optimal Tests

when a Nuisance Parameter is Present Under the Null Hypothesis," working paper, Princeton

University.

Faust, Jon (1998). "The Robustness of Identified VAR Conclusions about Money,"

Carnegie-Rochester Series on Public Policy 49: 207-244.

54



Ferguson, Thomas S. (1967), Mathematical Statistics: A Decision Theoretic Approach,

New York: Academic Press.

Fry, Renée, and Adrian Pagan (2011). "Sign Restrictions in Structural Vector Autore-

gressions: A Critical Review," Journal of Economic Literature 49(4): 938-960.

Giacomini, Raffaella, and Toru Kitagawa (2013). "Robust Bayes Inference for Partially

Identified VARs," working paper, University College London.

Giordani, Paolo (2004). "An Alternative Explanation of the Price Puzzle," Journal of

Monetary Economics 51: 1271—1296.

Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer

Engineers. Cambridge: Cambridge University Press.

Haar, A. (1933). "Der Massbegriff in der Theorie der kontinuierlichen Gruppen", Annals

of Mathematics second series 34(1): 147—169.

Hamilton, James D. (1994). Time Series Analysis. Princeton: Princeton University

Press.

Juvenal, Luciana, and Ivan Petrella (2011). "Speculation in the Oil Market," forthcom-

ing, Journal of Applied Econometrics.

Inoue, Atsushi, and Lutz Kilian (2013). "Inference on Impulse Response Functions in

Structural VAR Models," Journal of Econometrics 177: 1-13.

Kilian, Lutz, and Daniel P. Murphy (2012). "Why Agnostic Sign Restrictions Are Not

Enough: Understanding the Dynamics of Oil Market VAR Models," Journal of the European

Economic Association 10(5): 1166-1188.

55



Leamer, Edward E. (1978). Specification Searches: Ad Hoc Inference with Nonexperi-

mental Data. New York: John Wiley & Sons, Inc.

Litterman, Robert B. (1986). "Forecasting With Bayesian Vector Autoregressions— Five

Years of Experience," Journal of Business & Economic Statistics 4: 25-38.

Lubik, Thomas, and Frank Schorfheide (2004). "Testing for Indeterminacy: An Appli-

cation to U.S. Monetary Policy,” American Economic Review 94(1): 190-217.

Moon, Hyungsik Roger, and Frank Schorfheide (2012). "Bayesian and Frequentist In-

ference in Partially Identified Models," Econometrica 80: 755-782.

Moon, Hyungsik Roger, Frank Schorfheide, and Eleonora Granziera (2013). "Inference

for VARs Identified with Sign Restrictions", working paper, University of Pennsylvania.

Müller, Ulrich K. and Andriy Norets (2012). "Credibility of Confidence Sets in Nonstan-

dard Econometric Problems," working paper, Princeton University.

Poirier, Dale J. (1998). "Revising Beliefs in Nonidentified Models," Econometric Theory,

14: 483-509.

Rubio-Ramírez, Juan, Daniel F. Waggoner, and Tao Zha (2010). "Structural Vector

Autoregressions: Theory of Identification and Algorithms for Inference", Review of Economic

Studies, 77(2): 665-696.

Rotemberg, Julio J., and Michael Woodford (1997). "An Optimization-Based Economet-

ric Framework for the Evaluation of Monetary Policy," in NBER Macroeconomics Annual,

Volume 12, pp. 297-344, edited by Ben S. Bernanke and Julio J. Rotemberg. Cambridge,

MA: M.I.T. Press.

56



Shapiro, Matthew D., and Mark W. Watson (1988). "Sources of Business Cycle Fluctu-

ations," NBER Macroeconomics Annual, Volume 3, pp. 111-156, edited by Stanley Fischer.

Cambridge, MA: M.I.T. Press.

Sims, Christopher A., and Tao Zha (1998). "Bayesian Methods for Dynamic Multivariate

Models," International Economic Review 39: 949-968.

Smets, Frank and Raf Wouters (2003). "An Estimated Dynamic Stochastic General

Equilibrium Model of the Euro Area," Journal of the European Economic Association 1:

1123—1175.

Stewart, G.W. (1980). "The Efficient Generation of Random Orthogonal Matrices with

an Application to Conditional Estimators," SIAM Journal on Numerical Analysis 17(3):

403-409.

Taylor, John B. (1993). "Discretion Versus Policy Rules in Practice," Carnegie-Rochester

Conference Series on Public Policy 39: 195-214.

Uhlig, Harald (2005). "What are the effects of monetary policy on output?Results from

an agnostic identification procedure," Journal of Monetary Economics 52: 381—419.

57



 

58 

 

Table 1: Priors for contemporaneous coefficients 
 

Parameter      Meaning   Prior mode (c) Sign restriction 
 

�� Effect of π on supply 2 �� ≥ 0  
    

�� Effect of π on demand 0.75 none 
    

�� Effect of r on demand -1 none 
    

�	 Fed response to y 0.5 �	 ≥ 0 
    

�
 Fed response to π 1.5 �
 ≥ 0 
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Figure 1. Maximum likelihood estimates and likelihood contours for α and β.  Distance between contour 

lines is 3, and unshaded regions are exceedingly unlikely given the data. 
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Figure 2.  Maximum likelihood estimates and contours of prior and posterior distribution.  Distance 

between contour lines is 3, and unshaded regions are exceedingly unlikely given prior beliefs and the 

data. 
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Figure 3. Prior and posterior distributions for α and β. 
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Figure 4.  Graphs of equations (32) and (33). 
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Figure 5.  Blue bars represented estimated histogram for the date zero impact of a demand shock (top 

panel) and supply shock (bottom panel) as inferred from applying the conventional sign-restriction 

methodology to postwar U.S. data.  Red curve in top panel represents the Cauchy prior truncated by g > 

0, while red curve in bottom panel represents the Cauchy prior truncated by xL < h < xH. 
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Figure 6.  Prior distributions (in red) and posterior distributions (blue histogram) for contemporaneous 

parameters for 3-variable macro model. 
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Figure 7. Implications of different values for ψy and ψπ.  Dashed line: values for which MLE of αs is zero.  

Beaded line: values for which MLE of αs is infinity.  Dark shaded region: αs > 0 and βd < 0.  Light shaded 

region: αs > 0 and βd > 0. 

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ψy

ψ
π



 

67 

 

 

 

Figure 8.  Impulse-response functions for 3-variable VAR with informative priors for lagged coefficients.  

Solid lines: posterior median.  Shaded regions: 95% posterior credibility set. 
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Figure 9.  Impulse-response functions for 3-variable VAR with noninformative priors for lagged 

coefficients.  Solid lines: posterior median.  Shaded regions: 95% posterior credibility set. 
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