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Abstract

Gold rushes are periods of economic boom, generally associated with large increases in
expenditures aimed at securing claims near new found veins of gold. An interesting aspect of
gold rushes is that, from a social point of view, much of the increased activity is wasteful since
it contributes simply to the expansion of the stock of money. In this paper, we explore whether
business cycle fluctuations may sometimes be driven by a phenomenon akin to a gold rush.
In particular, we present a model where the opening of new market opportunities causes an
economic expansion by favoring competition for market share, which is essentially a dissolution
of rents. We call such an episode a market rush. We construct a simple model of a market rush
that can be embedded into an otherwise standard Dynamic General Equilibrium model, and
show how market rushes can help explain important features of the data. We use a simulated-
moment estimator to quantify the role of market rushes in fluctuations. We find that market
rushes may account for over half the short run volatility in hours worked and a third of the
short run volatility of output.
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Introduction

Sutter’s Mill near Coloma, California. January 24, 1848. James W. Marshall, a carpenter from

New Jersey, found a gold nugget in a sawmill ditch. This was the starting point of one of the

most famous Gold Rushes in history, the California Gold Rush of 1848-1858. More than 90,000

people made their way to California in the two years following Marshall’s discovery, and more than

300,000 by 1854 —or one of about every 90 people then living in the United States. The population

of San Francisco exploded from a mere 1,000 in 1848 to 20,000 full–time residents by 1850. More

than a century later, the San Francisco 49ers NFL team is still named for the prospectors of the

California Gold Rush. Another famous episode, which inspired Charlie Chaplin’s movie “The Gold

Rush” and Jack London’s book The “Call of the Wild”, is the Klondike Gold Rush of 1896–1904.

Gold prospecting took place along the Klondike River near Dawson City in the Yukon Territory,

Canada. An estimated 100,000 people participated in the gold rush and about 30,000 made it to

Dawson City in 1898. By 1910, when the first census was taken, the population had declined to

9,0001.

Gold rushes are periods of economic boom, generally associated with large increases in expenditures

aimed at securing claims near new found veins of gold. An interesting aspect of many gold rushes

is that, from a social point of view, much of the increased activity is wasteful since historically

it mainly contributed to the expansion of the stock of money. In this paper, we explore whether

business cycle fluctuations may sometimes be driven by a phenomenon akin to a gold rush. In

particular, we present a dynamic general equilibrium model where the opening of new market

opportunities causes an economic expansion by favoring competition for market share. We call

such an episode a market rush. The market rush may mainly act to redistribute rents between

firms with little external gain, in which case the net social value of such a market rush would

be minor. The object of this paper is to present a simple model of a market rush that can be

embedded into an otherwise standard Dynamic General Equilibrium model, to evaluate whether

such a phenomenon is a significant contributor to business cycle fluctuations and to examine the

social desirability of such fluctuations.

To capture the idea of a market rush, we present an expanding varieties model where agents

compete to secure monopoly positions in new markets. However, in a first step and in contrast to

standard growth models (see for example Romer [1987] and Romer [1990]) and to some business

cycle models (see for example Devereux, Head and Lapham [1993]), we do not impose that an

expansion in variety induces productivity gains, and we treat the growth in the potential set of

varieties as technologically driven and exogenous. In this setting, when agents perceive an increase

in the set of technologically feasible products, they invest to set up a prototype firm (or product)
1See http://en.wikipedia.org/wiki/Gold rushes for further facts and references.
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with the hope of securing a monopoly position in the new market. It is therefore the perception of

these new market opportunities that causes the market rush and the associated economic expansion.

After the initial rush, there is a shake out period where one of the prototypes secures the dominant

position in market. The long term effect of such a market rush depends on whether the expansion

in variety has an external effect on productivity. In the case where it does not have an external

effect, the induced cycle is socially wasteful as it only contributes to the redistribution of market

rents. In contrast, when the expansion of variety does exert positive external effects, the induced

cycle can have social value but will generally induce output fluctuations that are excessively large.

A potential example of such a process is the dot.com frenzy of the late 90s, where large investments

were made by firms trying to secure a position in the expanding internet market. At the end of

this process, there was a large shake out as many firms went bankrupt and only a small percentage

survived and obtained a substantial market position. The long run productivity gain associated

with this process are still unclear.

This paper explores whether expectations about new market could be a significant contributor to

macroeconomic fluctuations.2 Since expectations of new markets are not directly observable, we

need to set a demanding standard to evaluate such story. This is what we do. Not only do we

provide a model that is capable of explaining important features of a Consumption–Output Vector

Error Correcting Model (VECM) and their implication for hours, we also examine how well our

model does when it is forced to compete with alternative explanations.

We begin the paper by presenting, in Section 1, a set of properties of the data that any good model

of fluctuations should explain. Several of these features are well known and extensively discussed in

Cochrane [1994]. As shown by Cochrane [1994], in a bivariate Output–Consumption VECM of the

U.S. postwar economy, consumption is, at all horizons, almost solely associated with a permanent

shock recovered using a long run restriction. In contrast, the associated temporary shock of the

system is found to explain an important part of the short run volatility of output — i.e. the

business cycle. We show that this temporary shock also explains much of the fluctuations in hours

worked. We argue that these robust features of the data are quite challenging for business cycle

models since even temporary shocks generally imply some reaction of consumption. Furthermore,

the literature remains divided as to a structural interpretation for the temporary shock. As we

think that a market rush is a potential candidate, we develop in Section 2 a simple model3 which
2 This paper is related to several papers, both old and recent, which emphasize the role of expectations in affecting

business cycles. The newest embodiment of the literature (Beaudry and Portier [2004a], Beaudry and Portier [2004b],
Jaimovich and Rebelo [2006]and Christiano, Motto and Rostagno [2005a], Beaudry and Portier [2006]) emphasizes
the role of expectations regarding future productivity growth in creating fluctuations. However, anecdotal evidence
suggests that expectations about new market may be an important alternative.

3The type of models we present are ones where nominal rigidities play no role. Our interpretation of such models
is that they can correspond to models with sticky prices in which monetary authorities follow rules that implement
the flexible price outcomes.
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can be solved analytically and whose properties can therefore be clearly stated. In this model, we

show that current economic activity depends positively on the expectation of next period’s activity

and on the perceived opening of new markets. Hence, when agents believe that the economy is

starting a prolonged period of market expansion, this induces an immediate increase in investment

and an associated economic expansion. In contrast, when there are no new perceived market

opportunities, the economy experiences a slump. Given the tractability of the model, we can solve

it in the presence of a standard technology shock and our market expansion shock. The model puts

sufficient structure on the data to isolate the market expansion shock: it suggests that the market

expansion shock is the output innovation in a Consumption–Output VECM.

Since our simple analytical model performs well in explaining qualitative aspects of the data,

in Section 3 we construct and estimate a more general and richer model to see whether it can

explain quantitative features of the data. Since we allow for more than two shocks, the permanent

and transitory components recovered from the data in Section 1 do not have an easy structural

interpretation in this case, as they are combinations of fundamental shocks. We estimate the

resulting (more complex) model using a simulated method of moments. Our findings from the

larger model suggest that market expansion shocks are a non-negligible driving force underlying

business cycle fluctuations. Section 4 examines the robustness of our results with respect to allowing

for additional sources of fluctuations, such as investment specific technology shocks, temporary

technology shocks and preference shocks (in an appendix, we also discuss the potential role of

monetary shocks). Overall, we find that market rushes help explain a sizable fraction of hours

and output fluctuations even when allowing for these alternative explanations. Section 4 offers

concluding comments.

1 A Target Set of Observations

In this section, we present a set of observations which provides a rich though concise description of

fluctuations in output, consumption and hours worked. Some of these observations are well known,

and some are not. We believe that this set of observations captures many important features of

fluctuations that any business cycle theory should aim to explain. We will use these observations to

both motivate our interest in market rushes, and to test whether market rushes are a good candidate

explanation of these features. In particular, we will emphasize both qualitative and quantitative

properties of the data. After presenting the observations, we will begin by presenting a simple

analytical model of market rushes that is capable of explaining the main qualitative features we

highlight. It is in this sense that the empirical properties help motivate our interest in market

rushes as a potentially relevant contributor to business cycle fluctuations. In the following sections,

we explore the capacity of a model with market rushes to quantitatively explain the facts presented.
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Our interest is in emphasizing important time series properties of output, consumption and hours

worked. We could do this by directly examining the trivariate process. However, as is well known,

such an approach can depend heavily on the treatment of hours worked as a stationary or non-

stationary process. We therefore choose an approach that is robust to the treatment of hours

worked. To this end, we begin by reviewing properties of the bi-variate process for consumption

and output. More precisely, we study a Consumption–Output system with one cointegrating re-

lation. The main properties of this system were originally discussed in Cochrane [1994]. As in

Cochrane [1994], we use two schemes to orthogonalize the innovations of the process: a long run

orthogonalization scheme à la Blanchard and Quah [1989], and a short run or impact scheme à

la Sims [1980] . At this point, these two schemes should be viewed as devices for helping present

properties of the data. There is no claim that these schemes identify structural shocks, and there

are no claims that these data should be explained by a model which only has two shocks. One of the

properties we will emphasize is that these two schemes deliver almost identical impulse response

functions (IRFs). As we will show, this property can be traced back to a particular feature of

the Wold representation for consumption and output, and we argue that this feature constitutes a

qualitative property that business cycle models should try to replicate.

We begin by documenting the impulse responses associated with using a long run othogonalizing

scheme à la Blanchard and Quah [1989], and show that almost all of the short run volatility of

consumption is associated with the permanent shock, while this shock only accounts for half of the

volatility of output. We then use a short run orthogonalizing scheme à la Sims [1980] to show that

the resulting output innovation does not explain the long run properties of the two variables, nor

the short run properties of consumption. We then formally test for the identity of the temporary

shock recovered using the long run scheme and the output shock recovered using the short run

scheme. This is done by showing that such an identity is in fact a zero restriction in the long

run impact matrix of the Wold representation. We then turn our focus on relating these features

with the behavior of hours and we show that the temporary/output innovation recovered from the

consumption–output VECM explains most of the short run volatility of hours.

1.1 Long Run and Short Run Orthogonalization

We consider quarterly data for the US economy. The sample spans the period 1947Q1 to 2004Q4.

Consumption, C, is defined as real personal consumption expenditures on nondurable goods and

services and output, Y , is real gross domestic product. Both series are first deflated by the 15–64

U.S. population and expressed in logarithms.4

4Consumption is defined as the sum of services and nondurable goods, while output is real gross
domestic product. Each variable is expressed in per capita terms by dividing by the 15 to 64
population. The series are obtained from the following links. Real Personal Consumption Ex-
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Standard Dickey–Fuller, likelihood ratio and cointegration tests indicate that C and Y are I(1) pro-

cesses and do cointegrate. We therefore model their joint behavior with Vector Error Correcting

Model (VECM), where the cointegrating relation coefficients are [1;-1] (meaning that the consump-

tion to output ratio is stationary). Likelihood ratio tests suggest that the VECM should include 3

lags. Omitting constants, the joint behavior of (C, Y ) admits the following Wold representation(
∆Ct

∆Yt

)
= A(L)

(
µ1,t

µ2,t

)
, (1)

where L is the lag operator, A(L) = I +
∑∞

i=1AiL
i, and where the covariance matrix of µ is given

by Ω. As the system possesses one common stochastic trend, A(1) is not full rank. Given A(1), it

is possible to derive a representation of the data in terms of permanent and transitory components

of the form (
∆Ct

∆Yt

)
= Γ(L)

(
εPt
εTt

)
, (2)

where the covariance matrix of (εP , εT ) is the identity matrix and Γ(L) =
∑∞

i=0 ΓiL
i. The Γ

matrices solve {
Γ0Γ′0 = Ω
Γi = AiΓ0 for i > 0

(3)

Note that once Γ0 is known, all Γi are pinned down by the second set of relations. But, due

to the symmetry of the covariance matrix Ω, the first part of the system only pin downs three

parameters of Γ0. One remains to be set. This is achieved by imposing an additional restriction.

We impose that the 1, 2 element of the long run matrix Γ(1) =
∑∞

i=0 Γi equals zero, that is, we

choose an orthogonalization where the disturbance εT has no long run impact on C and Y (the

use of this type of orthogonalization was first proposed by Blanchard and Quah [1989]). Hence,

εT is labeled as a temporary shock, while εP is a permanent one. Figure 1 graphs the impulse

response functions of C and Y to both shocks as well as their associated 95% confidence bands,

obtained by bootstrapping the VECM. Table 1 reports the corresponding variance decomposition

of the process.

These results provide an interesting decomposition of macroeconomic fluctuations. The lower left

panel of Figure 1 clearly shows that consumption responds very little to the transitory shock, which

in turn accounts for less than 4% of consumption volatility at any horizon. Conversely consumption

is very responsive to the permanent shock and most of the adjustment dynamics take place in less

than one year. In other words, consumption is almost a pure random walk, that responds only to

permanent shocks and has very little interesting dynamics. On the contrary, short run fluctuations

penditures: Nondurable Goods : http://research.stlouisfed.org/fred2/series/PCNDGC96, Real Per-
sonal Consumption Expenditures: Services : http://research.stlouisfed.org/fred2/series/PCESVC96,
Real Gross Domestic Product, 3 Decimal: http://research.stlouisfed.org/fred2/series/GDPC96, Pop-
ulation: 15 to 64, annual: http://www.economy.com/freelunch/fl dictionary.asp?m=34174038-A1EF-4C.
70-9374-59144B50A3F5&h=H00060004&f=0&c=undefined.
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Figure 1: Responses of Output and Consumption to εP and εT
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This figure shows the responses of consumption and output to temporary εT and
permanent εP one percent shocks. These impulse response functions are com-
puted from a VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3
lags, using quarterly per capita U.S. data over the period 1947Q1–2004Q4. The
shaded area depicts the 95% confidence intervals obtained from 1000 bootstraps
of the VECM.
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Table 1: The Contribution of the Shocks to the Volatility of Output and Consumption

Horizon Output Consumption
εT εY εT εY

1 62% 80% 4% 0%
4 28 % 46 % 1% 1%
8 17 % 33% 1% 1 %
20 10 % 22 % 0% 2%
∞ 0 % 4 % 0% 4%

This table shows the k-period ahead share of the forecast error variance of con-
sumption and output that is attributable to the temporary shock εT in the long
run orthogonalization and to the output innovation εY in the short run one, for
k = 1, 4, 8, 20 quarters and for k −→ ∞. Those shares are computed from
a VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3 lags, using
quarterly per capita U.S. data over the period 1947Q1–2004Q4.

in output are mainly associated with the temporary shocks, which explain more than 60% of output

volatility on impact.

Now we consider an alternative orthogonalization that uses short run restrictions(
∆Ct

∆Yt

)
= Γ̃(L)

(
εCt
εYt

)
, (4)

where Γ̃(L) =
∑∞

i=0 Γ̃iL
i and the covariance matrix of (εC , εY ) is the identity matrix. The Γ̃

matrices are solution to a system of equations similar to (3). We however depart from (3) as

we impose that the 1, 2 element of Γ̃0 be equal to zero. Therefore, εY can be called an output

innovation, and by construction the contemporaneous response of C to εY is zero.

Figure 2 graphs the impulse responses of C and Y associated with the second orthogonalization

scheme. The associated variance decompositions are displayed in Table 1. The striking result from

these estimations is that the consumption shock εC is almost identical to the permanent shock to

consumption (εP in the long run orthogonalization scheme), so that the responses and variance

decompositions are very similar to those obtained using the long run orthogonalization scheme.

This observation is further confirmed by Figure 3, which plots εP against εC and εT against εY .

It is striking to observe that both shocks align along the 45◦ line, indicating that the consumption

innovation is essentially identical to the permanent component.

We now want to link the behavior of hours worked to the above description of output and con-

sumption. In particular, we want to ask how much of the variance of hours worked is associated

with the temporary shock (or quasi–equivalently the output shock) versus the permanent shock re-

covered from the consumption–output VECM. It is of interest to evaluate the contribution of these

two shocks to the volatility of hours since it allows us to see whether hours can best be described
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Figure 2: Responses of Output and Consumption to εC and εY
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This figure shows the responses of consumption and output to consumption εC

and output εY one percent shocks obtained from a short run orthogonalization
scheme. Those impulse response functions are computed from a VECM (C, Y )
estimated with one cointegrating relation [1;-1], 3 lags, using quarterly per capita
U.S. data over the period 1947Q1–2004Q4. The shaded area depicts the 95%
confidence intervals obtained from 1000 bootstraps of the VECM.
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Figure 3: Plots of εC against εP and εY against εT
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The left panel plots the estimated permanent innovation εP (from the long run
orthogonalization scheme) against the consumption innovation εC (from the
short run orthogonalization scheme). The right panel plots the estimated tem-
porary innovation εT (from the long run orthogonalization scheme) against the
output innovation εY (from the short run orthogonalization scheme). In both
panels, the straight line is the 45◦ line. These shocks are computed from a
VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3 lags, using
quarterly per capita U.S. data over the period 1947Q1–2004Q4.

as moving with the temporary component or the permanent component. To do so, we adopt the

following approach. Once the innovations εP and εT are recovered from the bivariate C–Y VECM,

we regress hours worked (in levels or differences) on current and lagged values of these two shocks

plus a moving average error term denoted εH , which we call an hours specific shock.5 An attractive

feature of this approach is that it delivers results which are robust to the specification of hours

worked (level or difference)6. More precisely, we run the regression

xt = c+
K∑

k=0

(
αkε

P
t−k + βkε

T
t−k + γkε

H
t−k

)
, (5)

where xt denotes either the (log) hours per capita in levels or in differences. This model is estimated

by maximum likelihood, choosing an arbitrarily large number of lags (K = 40). We then compute,
5Such a two step strategy amounts to the estimation of the following restricted trivariate moving-average process: Ct

Yt

Ht

 =

(
A(L) 02,1

B(L) C(L)

)  εP
t

εT
t

εH
t

 ,

where A(L) is a 2×2 polynomial matrix, 02,1 is a 2×1 vector of zeros, B(L) is a 1×2 polynomial matrix and C(L) is
a polynomial in lag operator. A(L), εP and εT are recovered from the first step bivariate VECM, while B(L), D(L)
and εH are estimated using a truncated approximation of the third line of the above MA process (which is equation
(5)).

6 It is well known (see for instance the discussions in Gali [1999], Gali and Rabanal [2004], Chari, Kehoe and
McGrattan [2004], Christiano, Eichenbaum and Vigfusson [2004]) that specification choice (levels versus first differ-
ences) matters a lot for VARs with hours worked. Results show that our procedure is robust to this specification
choice.
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for each horizon k the share of the overall volatility of hours worked accounted for by εP , εT and

by the hours specific shock εH . Results are reported in Table 2. The numbers reported in the table

Table 2: Variance Decomposition of Hours Worked Levels

Level Specification Difference Specification
Horizon εp εt εH εp εt εH

1 19 % 75 % 6 % 21 % 74 % 5 %
4 37 % 56 % 7 % 46 % 52 % 2 %
8 61 % 32 % 7 % 66 % 32 % 2 %
20 60 % 21 % 19 % 69 % 28 % 3 %
40 54 % 20 % 26 % 57 % 38 % 5 %

This table shows the k-period ahead share of the forecast error variance of hours
worked to the temporary εT , the permanent εP and the hours specific shock εH .
Those shares are computed using a two-step procedure. First εT and εP are de-
rived from the estimation of a VECM (C, Y ) with one cointegrating relation [1;-
1], 3 lags, using quarterly per capita U.S. data over the period 1947Q1–2004Q4.
Then hours worked (in levels or difference depending on the specification) are
projected on current and past values of those innovations plus a moving average
term in εH .

clearly indicate that hours worked are primarily explained by the transitory component at business

cycle frequencies.

To summarize, there are four properties of the data that we want to highlight: (i) the permanent

shock (εP ) recovered using a long run restriction in a consumption–output VECM is essentially

the same shock as that corresponding to a consumption shock (εC) recovered using an impact

restriction, (ii) the response of consumption to a temporary shock is extremely close to zero at

all horizons, and there are almost no dynamics in the response of consumption to a permanent

shock, as it jumps almost instantaneously to its long run level, (iii) the temporary shock (or the

output shock in the short run orthogonalization) is responsible for a significant share of output

volatility at business cycle frequencies and (iv) hours are largely explained by the transitory shock

at business cycle frequencies. These facts emphasize that a substantial fraction of the business

cycle action seems to be related to changes in investment and hours worked, without any short

or long run implications for consumption. We have investigated the robustness of these findings

both against changes in the specification of the VECM — by estimating rather than imposing the

cointegration relation, adding additional lags or estimating the VECM in levels — and against the

data used to estimate the VECM — we considered total consumption rather than the consumption

of nondurables and services, output as measured by consumption plus investment only — and

in all these cases we found no major changes in patterns.7 Since we have emphasized the quasi
7All these results are reported in the technical appendix to this paper, available from
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equivalence between the shocks recovered using a long run restriction, and shocks recovered using

an impact restrictions, in the next subsection we provide a formal test for the equality between εY

and εT .

1.2 Testing the Equality of εY and εT

This section proposes a test for the equality between εY and εT (or equivalently between εC and

εP as the shocks are pairwise orthogonal). We show that, for the VECM under consideration, this

equality corresponds to a particular zero in the long run impact matrix of the Wold decomposition.

Consider the Wold representation (1), and consider the following representation of the process:(
∆Ct

∆Yt

)
= B(L)

(
ν1,t

ν2,t

)
, (6)

where B(L) =
∑∞

i=0BiL
i and the variance covariance matrix of (ν1, ν2) is the identity matrix. We

want here to perform an overidentified orthogonalization and impose at the same time that (i) the

shock ν2 has no impact effect on C and (ii) no long run effect on C and Y . More precisely, we look

for a matrix S such that µ = Sν and Bi = AiS. Imposing a zero impact effect of ν2 on C implies

s12 = 0. (7)

The matrix giving the long run effect of ν on both variables is given by B̂ = ÂS, where Â =
∑∞

i=0Ai.

Imposing the long run restriction b̂12 = 0 implies

â11s12 + â12s22 = 0. (8)

When the two series cointegrate, the matrix Â rewrites

Â =
(
â11 kâ11

â21 kâ21

)
,

where k is a real number.

When â12 6= 0 — which occurs when both k and â11 are non zero — equations (7) and (8) imply

that the second column of S is composed of zeros, meaning that S is not a full rank matrix. In

other words, the two restrictions cannot hold at the same time. On the contrary, if â12 = 0 —

when either k or â11 are zero — the long run and short run constraints are simultaneously satisfied.

This suggests that a convenient way of testing whether both the short and long run constraints are

satisfied is to test for the nullity of a particular coefficient of the long run matrix Â of the Wold

representation of the process, â12. The following proposition states this result in a more general

case where the two series need not cointegrate.

http://fabcol.free.fr/index.php?page=research.
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Proposition 1 Consider a bivariate process whose Wold decomposition is given by(
∆X1

t

∆X2
t

)
= A(L)

(
µ1,t

µ2,t

)
,

with A(L) =
∑∞

i=0AiL
i, with A0 = I, where the covariance matrix of µ is given by Ω, and where the

matrix of long run effect Â = A(1) =
∑∞

i=0Ai is non singular. Consider a structural representation(
∆X1

t

∆X2
t

)
= B(L)

(
ν1,t

ν2,t

)
,

where B(L) =
∑∞

i=0BiL
i, the covariance matrix of ν is the identity matrix and µ = Sν. Then, the

two following statements are equivalent

(a) If the second structural shock ν2 has no short run impact on X1, i.e. s12 = 0, then it has no

long run impact on X1, i.e. b̂12 = 0, and conversely.

(b) The (1, 2) element of the long run effect matrix of the Wold decomposition is zero, i.e. â12 = 0

Proof : We first prove that (a) implies (b). Assume that

S =
(
s11 0
s21 s22

)
and B̂ =

(
b̂11 0
b̂21 b̂22

)
.

Inverting S, we obtain

S−1 =
(

1/s11 0
−s21/(s11s22) 1/s22

)
.

The long run effect matrix of the Wold decomposition is Â = B̂ × S−1 and one can easily check

that â12 = 0.

We then prove that (b) implies (a). We have the relation ÂS = B̂. We assume that â12 = 0. Then,

b̂12 = â11s12 . As Â is assumed to be nonsingular, â11 6= 0, so that b̂12 = 0⇐⇒ s12 = 0. Q.E.D.

To formally test whether εP = εC , we test for the nullity of â12. The confidence intervals are

obtained from 1000 bootstraps of the long run matrix. The coefficient â12 = 0 takes an average

value of 0.2024 with a 95% confidence interval [−0.2, 0.8]. At a 5% significance level, one cannot

reject the hypothesis that the consumption shock is identical to the permanent shock.

2 An Analytical Model of Market Rushes

In this section, we present a simple analytical model of market rushes. The main element is that, in

each period agents receive information about potential new varieties of goods which could become

13



profitable to produce. In response to these expectations of profits, agents invest in putting on the

market a prototype of the new good. Since many agents may invest in such startups, they engage

in a winner takes all competition for securing the market of a newly created variety. The winning

firm then becomes a monopolist on the market. This position may then be lost randomly at an

exogenous rate. Expansion in variety may or may not have a long run impact on productivity, so

that the market rush is not forced to satisfy the gold rush analogy. We first present the model,

then characterize its solution and discuss the equilibrium allocation properties. We contrast the

equilibrium allocations with those obtained from a social planner problem. Finally, we show that

a particular version of the model replicates the four properties of the data that we previously

highlighted.

2.1 Model

Firms : There exists a raw final good, denoted Qt, produced by a representative firm using

labor ht and a set of intermediate goods Xjt with mass Nt according to a constant returns to scale

technology represented by the production function

Qt = (Θtht)
αN ξ

t

(∫ Nt

0
Xt(j)χdj

) 1−α
χ

, (9)

where Θt is an index of disembodied exogenous technological progress and α ∈ (0, 1). χ 6 1

determines the elasticity of substitution between intermediate goods and ξ is a parameter that

determines the long run effect of variety expansion. Since this final good will also serve to produce

intermediate goods, we will refer to Qt as the gross amount of final good. Also note that the raw

final good will serve as the numéraire. The representative firm is price taker on the markets.

Each existing intermediate good is produced by a monopolist. Just like in many expanding variety

models, the production of one unit of intermediate good requires one unit of the raw final good as

input. Since the final good serves as a numéraire, this leads to a situation where the price of each

intermediate good is given by Pt(j) = 1
χ . Therefore, the quantity of intermediate good j, Xt(j),

produced in equilibrium is given by

Xt(j) = (χ(1− α))
1
α ΘtN

ξ−1+(1−α)/χ
α

t ht. (10)

and the profits, Πt(j), generated by intermediate firm j are given by

Πt(j) = π0ΘtN
ξ−1+(1−α)/χ

α
t ht, (11)

where π0 =
(

1−χ
χ

)
(χ(1 − α))

1
α . Equalization of the real wage with marginal product of labor

implies

Wt = AΘN
ξ+(1−α)(1−χ)/χ

α
t , (12)
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where A = α(χ(1− α))
(1−α)

α .

Value added, Yt, is then given by the quantity of raw final good, Qt, net of that quantity used

to produce the intermediate goods, Xt(j). Once we substitute out for Xt(j), and take away the

amount of Qt used in the production of Xt(t), we obtain

Yt = Qt −
∫ Nt

0
Pt(j)Xt(j)dj

= AΘtN
ξ+(1−α)(1−χ)/χ

α
t ht. (13)

Note that when ξ = −(1−α)(1−χ)/χ, an expansion in variety exerts no effect on labor productivity.

In this case, value–added reduces to

Yt = AΘtht (14)

The net amount of raw final good can serve for consumption, Ct, and startup expenditures, St,

purposes.

Yt = Ct + St. (15)

Variety Dynamics : In each period, there is an exogenous probability ηt that a potential new

variety appears in the economy. In such a case, any entrepreneur who desires to produce this

potential new variety has to pay a fixed cost of one unit of the final good to setup the startup. In

order to obtain a tractable solution, we consider allocations for which it is always optimal to exploit

the whole range of intermediate goods. In practice, we assume that there is no difference between

the potential number of varieties and the actual one in equilibrium. We later check that the model

parameters are such that full adoption is indeed optimal. Let St denote total expenditures on setup

costs. A time t+ 1 the startup will become a functioning new firm with a product monopoly with

an endogenous probability ρt. Likewise, an existing monopoly becomes obsolete at an exogenous

probability µ. Therefore, the dynamics for the number of products is given by

Nt+1 = (1− µ+ ηt)Nt. (16)

In the above, µNt represents the existing products that are destroyed, while there will be ηtNt

openings which can be filled by startups. ηt follows a random process, with unconditional mean µ.

Note that η is a news shock, since it brings information about future profitable varieties but does

not immediately affect the production function.

The St startups of period t compete to secure the ηtNt new monopoly positions. We assume that in

equilibrium St > ηtNt, which can later be verified as being satisfied. The ηtNt successful startups

are uniformly drawn from among the St existing ones. Therefore, the probability that a startup at

time t will become a functioning firm at t+ 1 is given by ρt = ηtNt

St
.
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Households : The preferences of the representative household are given by

Et

∞∑
τ=0

βτ
(
log(Ct+τ ) + ψ(h− ht+τ )

)
, (17)

where 0 < β < 1 is a constant discount factor, Ct denotes consumption in period t and ht is the

quantity of labor the household supplies. The household chooses how much to consume, supply

labor, hold equity (Et) in existing firms, and invest in startups (St) by maximizing (17) subject to

the following sequence of budget constraints

Ct + P E
t Et + St = Wtht + EtΠt + (1− µ)P E

t Et−1 + ρt−1P
E
t St−1, (18)

where P E
t is the beginning of period price of equity, prior to dividend payments and Wt is the wage

rate. Dividends per equity share are assumed to be equal to period–profits Πt.

The first order conditions imply:

ψCt = Wt (19)
1
Ct

(P E
t −Πt) = βEt

[
1

Ct+1
(1− µ)P E

t+1

]
(20)

1
Ct

= βEt

[
1

Ct+1
ρtP

E
t+1

]
. (21)

2.2 Equilibrium Allocations

The three last first order conditions can be combined to give:

1
ρtCt

= βEt

[
Πt+1

Ct+1

]
+ βEt

[
(1− µ)
ρt+1Ct+1

]
, (22)

which can be simply restated as

1 = βρtEt

∞∑
τ=0

[
βτ Ct

Ct+τ+1
(1− µ)τΠt+τ+1

]
.

This condition can be interpreted as a free entry condition, whereby the setup cost of a startup

(one unit of the final good) is equal to the expected discounted sum of future profits. Using the

labor demand condition (12) and the profit equation (11), the free entry condition (22) rewrites as(
St

Ct

)
= β

ψπ0

A

(
ηt

1− µ+ ηt

)
Etht+1 + β

(
1− µ

1− µ+ ηt

)
Et

[(
ηt

ηt+1

)(
St+1

Ct+1

)]
. (23)

Using the labor demand condition (12) and the resource constraint (15), we get(
St

Ct

)
= ψht − 1. (24)
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The free entry condition can therefore we written as:

(ht − ψ−1) = βδt
π0

A
Etht+1 + βδtEt

[(
1
δt+1

− 1
)

(ht+1 − ψ−1)
]
, (25)

where δt = ηt/(1− µ+ ηt) is an increasing function of the fraction of newly opened markets ηt.

Equation (25) is a key equation of the model. It shows that current employment ht depends on

ht+1, δt and δt+1, and therefore indirectly depends on all the future expected δs. As δt brings

news about the future, employment is purely forward looking. The reason why future employment

favors current employment can be easily given an economic intuition: higher future employment

reflects higher expected profits, which therefore stimulates new entries today. Note that the model

possesses a lot of neutrality, as the determination of employment does not depend on either current

or future changes in disembodied technological change Θt.

By repeated substitution, the above equation can be written as a function of current and future

values of δ only. Given the nonlinearity of equation (25),8 it is useful to compute a log–linear

approximation around the deterministic steady–state value of employment h. The latter is given

by:9

h =
ψ−1(1− β(1− µ))

(1− βµπ0
A − β(1− µ))

,

and the log–linear approximation takes the form

ĥt = γEtĥt+1 +
(
h− ψ−1

h

)
Et

[
δ̂t − βδ̂t+1

]
where ĥt now represents relative deviations from the steady state and γ ≡ βµ(π0/A) + β(1 − µ)

with γ ∈ (0, 1). Solving forward, this can be written as

ĥt =
(
h− ψ−1

h

)(
δ̂t − µβ

(
A− π0

A

)
Et

[ ∞∑
i=0

γiδ̂t+1+i

])
. (26)

Note that, as γ ∈ (0, 1), the model possesses a unique determinate equilibrium path.

Once the equilibrium path of h is computed, output is directly obtained from equation (13). Fi-

nally, combining labor demand (12) and labor supply (19), we obtain an expression for aggregate

consumption:

Ct =
A

ψ
ΘtN

ξ+(1−α)(1−χ)/χ
α

t . (27)

Equation (26) reveals that a positive δ̂t, – i.e. an acceleration of variety expansion, causes an

instantaneous increase in hours worked, output and investment in startups S. This boom arises

as the result of the prospects of profits derived from securing those new monopoly positions. This
8We show in the technical appendix to this paper that it is possible to obtain an exact analytical solution to the

model in the case of i.i.d. shocks.
9Note that we used the fact that Et(ηt) = µ, which implies that δ = µ in steady state.
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occurs irrespective of any current change in the technology or in the number of varieties. Such an

expansion is therefore akin to a “demand driven” or “investment driven” boom. In this analytical

model, consumption does not increase following a variety increase since total wealth is not increased.

2.3 Comparison to the social optimum

Optimality properties of those allocations are worth discussing, and it is useful to compute the

socially optimal allocations as a benchmark. The social planner problem is given by 10

Max Et
∑∞

i=0

[
logCt+i + ψ(h− ht+i)

]
s.t. Ct ≤ ÂΘtN

ξ+(1−α)(1/χ−1)
α

t ht − ηtNt,

(28)

with Â = α(1−α)
α

(1−α) and where we have already solved for the optimal use in intermediate goods.

The first order condition of the social planner program is given by

ÂΘtN
ξ+(1−α)(1/χ−1)

α
t

ÂΘtN
ξ+(1−α)(1/χ−1)

α
t ht − ηtNt

= ψ. (29)

There are many sources of inefficiency in the decentralized allocations. One obvious source is the

presence of imperfect competition: ceteris paribus, the social planner will produce more of each

intermediate good. Another one is the congestion effect associated with investment in startups,

because only a fraction ρt of startups are successful. The social planner internalizes this congestion

effect, and does not duplicate the fixed cost of startups, as the number of startups created is equal

to the number of available slots.11 Because of these imperfections, the decentralized allocation

differs from the optimal allocation along a balanced growth path.

The difference between the market and the socially optimal allocations that we want to highlight

regards the response to expected future market shocks. It is remarkable that the socially optimal

allocation decision for employment (29) is static, and only depends on ηt (positively). This stands

in sharp contrast with the market outcome, as summarized by equation (25), in which all future

values of η appear. To understand this difference, let us consider an increase in period t in the

expected level of ηt+1. We assume that full adoption is always optimal in both the decentralized

and the socially optimal allocations. In the decentralized economy, larger ηt+1 means more startup

investment in t + 1 and more firms in t + 2. Those firms will affect other firms profits in period
10We assume again here that parameters are such that it is always socially optimal to invest in a new variety. One

necessary condition for full adoption to be socially optimal is that the long run effect of variety expansion is positive,
– i.e ξ > −(1− α)(1− χ)/χ

11Note that we assume here that parameter values are such that it is always optimal to adopt all the new varieties.
Another potential source of sub–optimality would be an over or under adoption of new goods by the market. As
shown in Benassy [1998] in a somewhat different setup with endogenous growth, the parameter ξ is then crucial in
determining whether the decentralized allocations show too much or too little of new goods adoption.
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t+ 2 and onwards. Therefore, a period t startup will face more competitors in t+ 2, which reduces

its current value, and therefore decreases startup investment and output12. Such an expectation

is not relevant for the social planner, which does not respond to news about future values of η.

Therefore, in that simple analytical model, part of economic fluctuations are driven by investors

(rational) forecast about future profitability that are inefficient from a social point of view.13

2.4 A Gold Rush Configuration

We now make a set of specific assumptions on some parameters of the model. The objective is to

obtain a Wold representation of that simple analytical model that provides a structural interpreta-

tion to the shocks we recovered in Section 1. We first assume that disembodied technical change,

Θt, follows (in log) a random walk without drift: log Θt = log Θt−1 + εΘt . Second, we assume that

variety expansion exerts no effect on productivity in the long run. This is achieved by setting that

ξ = −(1 − α)(1 − χ)/χ. The aggregate production function is then given by (14). Finally, we

assume that variety expansion shocks ηt follow an AR(1) process of the form

log(ηt) = ρ log(ηt−1) + (1− ρ) log(µ) + εNt ,

where εNt are i.i.d. with mean 0. In this case, the solution for hours worked is given by

ĥt = ωη̂t with ω ≡ h− ψ−1

h

(1− µ)(1− βρ)
1− γρ

.

Under those assumptions, the logs of consumption and output are given by:

log(Yt) = ky + log(Θt) + log(ht) (30)

log(Ct) = kc + log(Θt), (31)

where kc and ky are constants. Using equation (25) to replace ht with its solution, it is straight-

forward to write the MA(∞) representation of the system. For instance, ignoring constant terms,

we obtain (
∆ log(Ct)
∆ log(Yt)

)
=
(

1 0
1 ω 1−L

1−ρL

)(
εΘt
εNt

)
= C(L)

(
εΘt
εNt

)
.

This particular version of the model shares a lot of dynamic properties with the data. First of all

the system clearly shows that consumption and output do cointegrate (C(1) is not full rank) with

cointegrating vector [1;-1]. Second, it shows that consumption is actually a random walk, that is

only affected —in the short run as well as in the long run— by technology shocks, εΘ. Output is also
12This is due to the typical “business stealing” effect found in the endogenous growth literature, for example in

Aghion and Howitt [1992], and originally discussed in Spence [1976a] and Spence [1976b].
13The very result that it is socially optimal not to respond to such news is of course not general, and depends on

the utility and production function specification. The general result is not that it is socially optimal not to respond
to news about η, but that the decentralized allocations are inefficient in responsing to news shocks.
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affected in the short run by the temporary shock, εN . Hence, computing, sequentially, our short

run and long run orthogonalization with this model would imply εP = εC = εΘ and εT = εY = εN .

Finally, it is the temporary shock εT (which is indeed εN ) that explains all the variance in hours

worked at any horizon. Such a model therefore allows for a structural interpretation of the results we

obtained in Section 1. Permanent shocks to C and Y are indeed technology shocks. Consumption

does not respond to variety expansion shocks, which however account for a lot of output fluctuations

and all the fluctuations in hours worked. Variety expansion shocks create market rushes that are

indeed gold rushes, generating inefficient business cycles as the social planner would choose not to

respond to them. In effect, these shocks only trigger rent seeking activities, as startups are means

of appropriating a part of the economy pure profits.

Although simple, this model illustrates how the market mechanism we have put forward has the

potential to account for what we observe in the data. In the next section, we consider an extended

version of the model in which we introduce capital accumulation, and real frictions. We use the

estimated responses from the long run orthogonalization scheme to estimate the size of the techno-

logical and variety expansion shocks. Once those parameters are estimated, we are able to assess

the ability of the model to account quantitatively for the facts we documented in Section 1, and

therefore decompose economic fluctuations in a meaningful way, using our model as a measurement

tool.

3 Quantitative Assessment

In this section, we first present the extended model before describing the calibration and estimation

procedure. Then we comment on the estimated parameters and derive some implications of the

estimated model. Finally, we discuss the quantitative success of alternative explanations of the

facts.

3.1 Model, Calibration and Estimation Procedure

Our emphasis in this work is on the existence of a new type of shock, namely a market rush.

In order to gauge the quantitative importance of this shock in the business cycle, we enrich the

propagation mechanisms of our baseline model, and estimate it with U.S. data.

The Extended Model: We extend the model by including capital accumulation, two types of

intermediate goods and habit persistence in consumption. The final good is now produced with
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capital, Kt, labor, ht and two types of intermediate goods Xt(i) and Zt(j), according to

Qt = K1−αx−αz−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

N ξ̃
z,t

(∫ Nz,t

0
Zt(j)χdj

)αz
χ

, (32)

with αx, αz, αh ∈ (0, 1), αx + αz + αh < 1 and χ > 1. We impose that ξ = −αx(1 − χ)/χ so that

variety expansion in intermediate goods X has no long–run impact, and that ξ̃ = (χ(1−αx)−αz)/χ,

so that the equilibrium aggregate value added production function is linear in the number of

intermediate goods of type Z (Nz,t). Θt denotes Harrod neutral technical progress, the log of

which is assumed to follow a random walk with drift γ > 1.

As in the analytical model, the numbers of available varieties evolve exogenously according to

Nx,t+1 = (1− µ+ ηx
t )Nx,t

Nz,t+1 = (1− µ+ ηz
t )Nz,t.

In equilibrium, full adoption will always be optimal. We assume that the stochastic processes for

productivity and the market shocks are given by

log(ηx
t ) = ρx log(ηx

t−1) + (1− ρx) log(ηx) + εxt

log(ηz
t ) = ρz log(ηz

t−1) + (1− ρz) log(ηz) + εzt

log(Θt) = log(γ) + log(Θt−1) + εΘt .

We assume that εx, εz and εΘ are Gaussian white noises with zero means and respective variances

σ2
x, σ2

z and σ2
Θ.

Capital accumulation is governed by the law of motion

Kt+1 = (1− δ)Kt +
[
1− S

(
It
It−1

)]
It,

where δ ∈ (0, 1) is the constant depreciation rate. The function S(·) accounts for the presence of

adjustments costs in capital accumulation. We assume that S(·) satisfies S(γ) = S ′(γ) = 0 and

ϕ = S ′′(γ)γ2 > 0. It follows that the steady state of the model does not depend on the parameter ϕ

while its dynamic properties do. Notice that following Christiano, Eichenbaum and Evans [2005b],

Christiano and Fisher [2003] and Eichenbaum and Fisher [2005], we adopt the dynamic investment

adjustment cost specification. In this environment, it is the growth rate of investment which is

penalized when varied in the neighborhood of its steady state value. In contrast, the standard

specification penalizes the investment–to–capital ratio. The dynamic specification for adjustment

costs is a significant source of internal propagation mechanisms as it generates a hump–shaped

response of investment to various shocks.
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Finally, we introduce habit persistence in consumption, and the intratemporal utility function is

given by

Et

∞∑
τ=0

[
log(Ct+τ − bCt+τ−1) + ψ(h− ht+τ )

]
.

Note that introducing adjustment costs to investment and habit persistence, while not affecting the

main qualitative properties of the model we have presented in Section 2, will improve the ability of

the model to capture the shape of the impulse response function. The model then solves as in the

preceding section, except that no analytical solution can be found.

Calibration: Our quantitative strategy is to calibrate those parameters for which we have esti-

mates or that we can obtain by matching balanced growth path ratios with observed averages. The

time period is a quarter. The discount factor is set such that the household discounts the future

at a 3% annual rate. We assume constant markups of 20%, so that χ = 0.833. The depreciation

rate is equal to 2.5% per quarter, as is common the literature. We assume that the two sets of

intermediate goods differ only with regards to the long run impact of a variety expansion, and

therefore assume αx = αz.14 The parameters αh and αx are set such that the model generates a

labor share and a share of intermediate goods in value added of, respectively, 60% (Cooley and

Prescott [1995]) and 50% (Jorgenson, Gollop and Fraumeni [1987]). µ is set such that the model

generates a consumption share of 70%. The calibrated parameters are summarized in Table 3.

Table 3: Calibrated Parameters

Preferences
Discount factor β 0.9926

Technology
Elasticity of output to intermediate goods αx + αz 0.3529
Elasticity of output to hours worked αh 0.4235
Depreciation rate δ 0.0250
Elasticity of substitution bw intermediates χ 0.8333
Rate of technology growth γ 1.0060
Monopoly death rate µ 0.0086

Estimation Procedure: We estimate the following seven parameters: the standard deviation

of the technological shock innovation σΘ, the persistence parameters ρx and ρz, and the standard

deviations σx and σz of the two market shocks, the habit persistence parameter b and the adjustment

cost parameter ϕ. These parameters are chosen in order to match the output impulse responses of

the long run VECM that we have presented in section 1, and that are displayed in Figure 1. As the
14This assumption amounts to the choice of the relative variance σ2

x/σ2
z and can be made without loss of generality.
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long run orthogonalization scheme cannot recover the model structural shocks (three shocks in the

model and only two innovations in the VECM), we cannot directly match the model’s theoretical

responses with the empirical responses to εP and εT . Therefore, we follow a simulated method of

moments approach. Let Ψ = (σΘ, ρx, σx, ρz, σz, b, ϕ) be the parameters to be estimated, and let M

be the column vector of estimated moments to match. We denote by M(Ψ) a column vector of

the same moments obtained from simulating the model with parameters Ψ. The set of estimated

parameters Ψ̂ is then chosen so as to minimize the distance D

D = (M(Ψ)−M)′W (M(Ψ)−M) ,

where W is a weighting matrix that is given by the inverse of the covariance matrix of the estimators

of M . The simulated moments M(Ψ) are obtained by simulating the model over 20 times 232

periods,15 which is the length of our data sample.

The last issue concerns the choice of moments to match. We aim at matching the impulse responses

of output obtained from model generated data to both the permanent and the transitory responses

presented in Section 1 based on real data. We use the first twenty quarters of the impulse responses

in these exercises. We leave as tests of the model its capacity to reproduce the responses of output

to the short run orthonalization scheme and consumption in both scheme. Using the long run

scheme, the response of output to a permanent shock displays a hump,16 and for that reason, we

have supplemented the model with habit persistence and adjustment costs in investment. There

are therefore forty moments to match. We have two ways of testing our model. The first is by

making use of the over–identifying restrictions associated with the estimation procedure (seven

parameters for forty moments), by means of a J–test, following Hansen [1982]. The second one

is to check whether or not the estimated model possesses the properties of the data that we have

highlighted in Section 1, namely the identity between the short and long run orthogonalization

schemes and the importance of the temporary shock in explaining the short run patterns in output

and hours worked, but not of consumption. To do so, we will compute two distance statistics,

D(C) and D(C, Y ). D(C) is the a measure of the distance between the first twenty coefficients of

consumption IRF as estimated in the data and as estimated from the simulated data. The statistic

is computed as:

D(C) = (M(C, Ψ̂)−M(C))′Wc(M(C, Ψ̂)−M(C)),

where M(C) is a vector collecting the impulse responses of consumption to both the permanent and

the transitory shocks obtained from the VECM, whileM(C, Ψ̂) collects the same impulse responses
15Michaelides and Ng [1997] have shown that efficiency gains are negligible for a number of simulations larger than

10.
16Cogley and Nason [1995] have also proposed the estimation of a (C, Y ) VECM, and show that the response of

output to the temporary shock is hump–shaped. We find in this study that it is the response to the permanent shock
that is hump–shaped. This difference comes from the sample period and the choice of the output variable, that is
Net Domestic Product in Cooley and Nason and Gross Domestic Product(GDP) in our work. We prefer the use of
GDP as it is the most commonly used measure of output in the literature.
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obtained by simulating the theoretical model for the estimated values of the parameters. Wc is the

inverse of the covariance matrix of these moments obtained from the VECM. Similarly, D(C, Y )

represents the distance between the model and the data for both consumption and output IRFs.

3.2 Estimation Results

Table (4) reports the estimated values of the seven parameters of interest, together with the values

of the J–statistics for over–identification. First of all note that the model is not rejected by the

data as the associated J–state is low. A key result is that σz is not significantly different from zero.

Market shocks therefore do not affect productivity in the long run, which makes market rushes

inefficient in the model.

Table 4: Estimated Parameters

Persistence of the X market shocks ρx 0.9166
(0.0336)

Standard dev. of X market shocks σx 0.2865
(0.0317)

Persistence of the Z market shocks ρx 0.9164
(0.6459)

Standard dev. of Z market shocks σz 0.0245
(0.1534)

Standard dev. of the technology shocks σΘ 0.0131
(0.0015)

Habit persistence parameter b 0.5900
(0.1208)

Adjustment cost parameter ϕ 0.4376
(0.3267)

J–Stat 17.40
[0.99]

D(C) 42.51
[0.12]

D(C, Y ) 92.78
[0.06]

This table first presents the estimated parameters, as obtained from a Simulated
Method od Moments estimation of the model. Standard errors are in paren-
thesis. The last three lines display J–statistics and Distance statistics. These
statistics are distributed chi-square, and the p–value for testing their nullity is
given in brackets.

The impulse responses of the VECM estimated on the artificial data generated from the model are

presented on Figure 4, together with the ones estimated with the data. The confidence bands are
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the one computed from the data. Note that the IRFs of the model lie within the confidence bands,

which confirms that the model does a good job not only on impact and in the long run (as shown

by the low level of the J–stat), but also for much of the dynamics. This is confirmed by the D(C)

statistic. This statistic is distributed according to a chi-square with 33 degrees of freedom under

the null hypothesis of equality between the IRFs obtained from the VECM on both historical and

simulated data for consumption. The test statistic value is 42.51 with an associated p–value of 12%.

The implications of the model for consumption dynamics are not rejected by the data. Similarly,

we perform the same test for the joint behavior of consumption and output. Again, the model is

not strongly at odds with the data (D(C, Y )=92.78 with p–value 6%).

The model already displays two of the three properties of the data that we put forward previously:

(i) there is virtually no dynamics in the response of consumption to the permanent shock, as it

affects permanently and almost instantaneously the level of consumption and (ii) the temporary

shock is responsible for a significant share of output volatility at business cycle frequencies.

It is now of interest to test whether the model also possesses the first property: (i) the permanent

shock to consumption εP is approximately identical to the εC shock recovered from a consumption–

output VECM. We therefore perform our test for the equality between εY and εT in the data

generated by the model. We then generate 1000 replications of the model simulations. In 87%

of the cases we have the property that the (1, 2) element of the long run effect matrix of the

Wold decomposition of a (C, Y ) VECM is not significantly different from zero. Figure 5 reports

the estimated impulse response functions as obtained from the VECM in the data and using the

simulated data of the model assuming a short–run orthogonalization scheme. Again, the fit is

extremely good. In Figure 6 we report the IRFs of output and consumption as obtained from the

short–run and long–run orthogonalization scheme of the VECM estimated with simulated data.

The figure clearly shows that the profiles of the IRFs are very similar. The model is therefore able

to reproduce those three salient features of the data that we have put forward in section 1.

Table 5 reports the variance decomposition of hours worked both in the data and in the model, as

computed from the same regression as equation (5). As can be seen from the table, hours volatility

is primarily accounted for by the transitory shock over the short run horizon. In fact the model

predicts that 65% of the overall volatility of hours can be accounted for by transitory shocks at

the one period horizon, to be compared to the 75% found in the data. Again the model seems to

perform remarkably well along this dimension.

3.3 Business Cycle Accounting

Once estimated, the model can be used to evaluate the importance of the market rush phenom-

ena in the U.S. business cycle. In effect, the model allows for a meaningful (structural) variance
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Figure 4: Impulse Response Functions: Data versus Model (Long Run Orthogonalization Scheme)
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This figure compares the responses of consumption and output to permanent
and transitory shocks (long run orthogonalization scheme), as estimated from
the data (continuous line) and from model simulated data (dashed line). More
precisely, the dashed line is the average over 1000 replications of the model
simulation, VECM estimation and orthogonalization. The shaded area repre-
sents the 95% confidence intervals obtained from 1000 bootstraps of the VECM
estimated with actual data.
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Figure 5: Impulse Response Functions: Data versus Model (Short Run Orthogonalization Scheme)
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This figure compares the responses of consumption and output to consumption
and output shocks (short run orthogonalization scheme), as estimated from the
data (continuous line) and from model simulated data (dashed line). More pre-
cisely, the dashed line is the average over 1000 replications of the model simula-
tion, VECM estimation and orthogonalization. The shaded area represents the
95% confidence intervals obtained from 1000 bootstraps of the VECM estimated
with actual data.
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Figure 6: Theoretical Impulse Response Functions (Long Run versus Short Run)
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This figure compares the responses of consumption and output to a permanent
(continuous line, labeled LR for Long Run) or consumption shock (dashed line,
labeled SR for Short Run) and to a transitory (continuous line) or output shock
(dashed line), as estimated from model simulated data. More precisely, each line
is the average over 1000 replications of the model simulation, VECM estimation
and short or long run orthogonalization.
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Table 5: Variance Decomposition of Hours Worked

Data Model
Horizon εp εt εh εp εt εh

1 19 % 75 % 6 % 35 % 65 % 0%
4 37 % 56 % 7 % 19 % 81 % 0%
8 61 % 32 % 7 % 24 % 76 % 0 %
20 60 % 21 % 19 % 28 % 72 % 0 %
40 54 % 20 % 26 % 28 % 72 % 0 %

This table shows the k-period ahead share of the forecast error variance of hours
worked to the temporary εT , the permanent εP and the hours specific shock εH ,
as estimated from the data and from the simulated data. Those shares are
computed using a two-step procedure. First εT and εP are derived from the
estimation of a VECM (C, Y ) with one cointegrating relation [1;-1], 3 lags,
using quarterly per capita U.S. data over the period 1947Q1–2004Q4 for the
actual data and 232 periods for simulated data. Then hours worked (in levels
or difference) depending on the specification) are projected on current and past
values of those innovations plus a moving average term in εH . In the case of
the model, those numbers are averages over the 20 replications used during the
estimation process.

decomposition of fluctuations as reported in Table 6.

As expected from the estimation results, the market shock that exerts a permanent effect on output

does not contribute to the dynamics of the model. Indeed, the market shock that has no impact on

productivity, εx, accounts for more than one third of output volatility17 and about 85% of hours

worked on impact. On the contrary, and as expected, consumption is almost solely explained by

the permanent technology shock.

Figures 7, 8 and 9 show the theoretical responses of the main variables of the model to the structural

shocks. Note that responses are qualitatively different from one shock to another, which allows for

a proper identification of the contribution of each of them. The responses to the permanent shock

(Figure 7) display comovements of investment, output and consumption, as well as a negative initial

response of hours, explained by the role of habit persistence in consumption. The response to the

unproductive market shock (Figure 8) displays a boom in output, hours worked and investment in

the short–run, while consumption hardly responds. It is clear from this figure that such a shock

is likely to contribute to the identified transitory shock of the (C, Y ) VECM. The market shock

drives the discounted sum of expected future profits upwards, making it worthwhile to invest in

startups. This creates a boom in total investment, and also leads firms to raise their demand for
17It is worth noting that the response of output to the transitory shock hinges on the response of all components

of investment except residential investment (see the technical appendix). We take this observation as an additional
fact in favor of our story in which entrepreneurs investment play a major role.
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Table 6: Contribution of Shocks to the Business Cycle in the Estimated Model

Horizon Output Consumption Hours
εΘ εx εz εΘ εx εz εΘ εx εz

1 64 % 36 % 0 % 94 % 6 % 0 % 15 % 85 % 0%
4 86 % 14 % 0 % 95 % 5 % 0 % 19 % 81 % 0%
8 92 % 8 % 0 % 96 % 4 % 0 % 32 % 68 % 0%
20 96 % 3 % 1 % 98 % 1 % 1 % 40 % 59 % 1%
∞ 96 % 0 % 4 % 96 % 0 % 4 % 41 % 57 % 2%

This table reports the forecast error variance decomposition of consumption,
output and hours worked when the estimated model is used as the forecasting
model.

Figure 7: Model Response to a Permanent Technology Shock εΘ
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This figure displays the responses of consumption, total investment, hours
worked and output to a technology innovation of one standard-deviation, as
computed from the estimated model.
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labor. Therefore output increases — creating an expansion without any changes in productivity.

Furthermore, as this shock essentially creates a competition for rents, it is unproductive and con-

sumption almost does not respond. The response to the productive market shock (Figure 9) is

quite different, which again allows for a proper identification. First the shock exerts a permanent

effect on consumption, investment and output. Second, output does not move much in the short

run, which makes this shock unlikely to contribute to the temporary shock of the VECM.

Figure 8: Model Response to a Non-Productive Market Shock εx
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This figure displays the response of consumption, total investment, hours worked
and output to a non-productive market shock of one standard-deviation, as com-
puted from the estimated model.

Table 7 displays some statistics of the Hodrick-Prescot (HP) filtered simulated series. As can

be seen from the table, the model performs well in matching the ranking of volatilities and the

comovements of the US business cycle, although investment and hours appear to be not volatile

enough.

3.4 Alternative Models

In this section we explore the robustness of the result of the previous section which indicated that

non–productive market shocks (market rushes) may be an significant source of macroeconomic

fluctuations. Our approach is to add alternative shocks to our model, one at a time, re–estimate

it and then see whether the resulting structural variance decompositions substantially change our

estimates of the relative contribution of market rushes for output, consumption and hours fluc-

tuations. We consider four types of shocks.18 First we investigate the implications of adding an
18Obviously we do not claim to have exhausted the list of possible explanations, but want to point out what we

think are the four more widespread explanations in the profession, as we can identify them from introspection and
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Figure 9: Model Response to a Productive Market Shock εz
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This figure displays the response of consumption, total investment, hours worked
and output to a productive varities innovation of one standard-deviation, as
computed from the estimated model.

Table 7: Some Moments of the Simulated Data (HP–filtered)

Data Model
σx ρ(·, y) ρ(·, h) σx ρ(·, y) ρ(·, h)

y 1.69 – – 1.44 – –
c 0.78 0.78 – 0.78 0.79 –
I Total 6.81 0.86 – 3.56 0.95 –
h 1.90 0.88 – 1.12 0.66 –
y/h 0.87 0.50 0.09 1.09 0.64 -0.14

This table reports moments calculed both model generated data and actual data.
Series are taken in logs and detrended applying the HP–filter with smoothing
parameter λ = 1600.
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investment specific shock in our model. We examine this case in considerable detail since it has

received substantial attention in the literature and we recognize that the omission of investment

specific shocks could create a substantial bias in favor of finding that market rushes are important

even if they are not. The two other real shocks we consider are a temporary total factor produc-

tivity shock and a preference shock. A fourth possibility involves examining the role of a monetary

shock in a New–Keynesian type of model. As this fourth possibility requires writing a substantially

different model, we leave the exposition of the model and results to the technical appendix. As

can be seen in the appendix, we do not find that allowing a monetary shock to compete with our

market rush shock changes our findings regarding the relevance of market rushes for fluctuations.

One simplification we make in analyzing these cases is that we remove the Z shock (the market

shock with productivity effects), and thereby focus on models with three shocks: a permanent

TFP shock, a non–productive market shock and a third shock which can be either an investment

specific shock, a temporary TFP shock or a preference shock. The omission of the Z shock appears

reasonable since we saw in the last section that it is not playing any substantial role in fluctuations.

The production function therefore reduces to19

Qt = K1−αx−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

.

3.4.1 Investment Specific Shock

The first shock we consider is an investment specific shock à la Greenwood, Hercowitz and Krussell

[2000] or Fisher [2002]. We modify the resource constraint, which is now given by

Yt = Ct + St + e−ζtIt,

where ζ is the investment specific shock. In his VAR study, Fisher [2002] argues that investment

specific shocks ought to exert a permanent effect and should be modeled as random walk. We will

consider both the case where the investment specific shock is modeled as a random walk and the

case where it is modeled as a stationary autoregressive process.

We first estimate a model with a permanent investment specific shock, our market shock and

a permanent TFP shock. As a first pass, the model is estimated by matching the response of

output to both the permanent and the transitory component, as was done in the previous section.

This experiment is labeled PIS–1 in Table 8 which reports the estimation results and in Table 9

which reports the associated variance decomposition. In this version the model fits the data very

comments during seminars.
19An implication of this simplification is that the elasticity of output with respect to the intermediate good, αx, is

now greater as it is still calibrated to match on the share of intermediate goods in output. This implies a mechanical
reduction in the volatility of the market shock ηx

t (see footnote 14).
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well. The model does relatively well in accounting for the joint dynamics of consumption and

output (as indicated by the value of the D(C, Y )). What is interesting is that the volatility of

the permanent investment specific shock is estimated to be very close to zero. Its contribution to

output, consumption and hours worked volatility is essentially zero. In contrast, our market shock

remains a very important component in explaining hours and output.

We replicate the estimation of this model by now matching both output and consumption responses,

instead of only matching the output response. This experiment is labeled PIS–2 in the tables. The

model is not rejected by the data (p–value=0.86), and the volatility of the investment specific

shock is now close to that usually obtained by fitting the relative price of investment. Nevertheless,

the variance decomposition reported in Table 9 shows that the investment specific shock is not an

important source of business cycle fluctuations, while the market shock remains important. These

results suggest that our market shock is not simply picking up some component of output and

consumption fluctuations that is induced by permanent investment specific shocks.

These pessimistic results regarding the contribution of the investment specific shock to fluctuations

may come from its specification as a random walk. We therefore also consider a stationary repre-

sentation of the investment specific shock. The TIS–1 experiment then corresponds to a situation

where the model parameters are estimated so as to match the impulse responses of output. One

difficulty with this model is that it estimates a volatility for the innovation to the investment specific

shock that is about three times as high as in the data. The interesting result for our conjecture,

as shown in Table 9, is that the investment specific shock does not undermine the contribution of

the market shock to accounting for the business cycle. The market shock still accounts for 42% of

output volatility in the short–run while the investment specific shock only accounts for less than

5% of the output volatility at the same horizon. Furthermore, the same invariance result obtains

for hours worked and for consumption.

One may however be worried that the investment specific shock may not be well identified by this

procedure since it considers only output responses at the estimation stage. We therefore add the

impulse responses of consumption to our list of moments to match so as to add information to the

system. This experiment is labeled TIS–2 in the tables. This experiment still gives some strong

support to the model (p–value=0.87). Now the estimated process of the investment specific shock

is very much in line with what would result from an estimation from the relative price of investment

series. The key results in terms of variance decomposition are left unaffected. The market shock

still accounts for 40% of output volatility in the short–run while the investment specific shock only

accounts for less than 3%. Likewise hours worked are mainly explained by the market shock (94%

on impact), while consumption is only explained by the technological shock. In other words, the

investment specific shock appears to explain little of economic fluctuations when one allows for our

market shock, while the market shock continues to explain a substantial fraction of fluctuations
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when the investment specific shock is included. 20

Table 8: Estimation Results

PIS–1 PIS–2 TIS–1 TIS–2 T.T. T.P.
b 0.6108 0.3125 0.6457 0.3062 0.3420 0.3877

(0.1229) (0.1921) (0.1180) (0.2184) (0.1869) (0.1472)

ϕ 0.4195 0.2534 0.6099 0.2775 0.3125 0.3699
(0.3227) (0.3201) (0.6675) (0.4235) (0.2645) (0.3228)

σΘ 0.0131 0.0088 0.0126 0.0089 0.0062 0.0075
(0.0017) (0.1592) (0.0017) (0.0016) (0.0044) (0.0037)

ρx 0.9117 0.8919 0.9143 0.8967 0.9195 0.9075
(0.0323) (0.0395) (0.0374) (0.0420) (0.0234) (0.0259)

σx 0.1575 0.1859 0.1594 0.1775 0.1768 0.1825
(0.0217) (0.0349) (0.0197) (0.0266) (0.0278) (0.0297)

ρT – – 0.5328 0.8478 0.9143 0.8799
(0.2742) (0.4974) (0.1148) (0.1959)

σT 0.0003 0.0038 0.0118 0.0032 0.0046 0.0068
(0.0243) (0.0082) (0.0137) (0.0048) (0.0021) (0.0030)

J–stat 17.31 60.96 14.89 59.48 54.65 50.56
[0.99] [0.86] [1.00]) [0.87] [0.95] [0.98]

D(C, Y ) 99.42 92.34
[0.03] [0.06])

Note: ρT and σT denote respectively the persistence parameter and the
volatility of the third shock. Standard errors are in parenthesis, p–value
in brackets.

We further pursue our experiments with investment specific shocks by examining a model in which

the volatility of the market shock is constrained to be null and where only a permanent investment

specific shock is introduced to complement the permanent technology shock. The model is again

estimated by the simulated minimum distance estimation. In order to maximize the chances of

this alternative model to match the facts, the estimation aims at matching the impulses response

functions of both consumption and output over the first twenty quarters. We find that this model

is unable to fit the data very well (J–stat=271.4, p–value=0.00). This may actually come as no

surprise as the wealth effect of a permanent investment specific shock generates a strong reaction

of consumption in the short run.21 As a alternative, we also evaluate a model is which there is no
20At first pass, these observations may appear at odds with the results in Fisher [2002] which suggest, using an

identified VAR approach, that investment specific shocks explain a substantial fraction of fluctuations. One way
to reconcile these two sets of observations is to recognize that the investment specific shocks identified in Fisher
[2002] may be capturing part of the effects we associate with market rushes. In particular, if changes in the quality
of equipment proceed and signal the opening of new markets, then the shocks identified in Fisher [2002] could be
generating macroeconomic fluctuations mainly through their effect on market rushes as opposed to working through
standard capital accumulation incentives.

21In the technical appendix to this paper, we present an analytic model with investment specific shocks and show
that it cannot reproduce the four facts we have highlighted in the first section, regardless of the assumption that one
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market shock and in which the investment specific shock is assumed to be stationary. The estimated

the model is again not well supported by the data (J–stat=99.3, p–value=0.03). More worrisome

is that the investment specific shock is estimated to be about seven times more volatile than its

empirical counterpart.22 As an final strategy, we impose the process for this shock as estimated

from the series of the relative price of investment. When we do so, the model obviously does not fit

the data very well, but the match is not overwhelmingly rejected by the data either (J–stat=106.1,

p–value=0.02). When evaluating the role of investment specific shocks in the resulting estimated

model, we find that they now can account for a substantial fraction of fluctuations in the very short

run. Hence, we conclude this subsection by recognizing that a temporary investment shock could

be responsible for a substantial fraction of output fluctuations, but that such an explanation does

not appear robust to the inclusion of our market shock.

3.4.2 Transitory Technological Shock

We now consider a version of the model in which we allow for a temporary shock to total factor

productivity in addition to a permanent TFP shock and our market shock. Technology is now

given by

Qt = eζtK1−αx−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

,

where ζ is a stationary AR(1) autoregressive process. The parameters are estimated so as to match

the impulse responses of consumption and output. The experiment is labelled T.T. in the tables.

As can be seen from Table 9, the introduction of this shock does not undermine the contribution

of the market shock to output volatility in the business cycle. The market shock still account for

about 38% of output volatility in the short–run and more than 95% of that of hours worked. In

fact, the transitory technology shock acts as a substitute for the permanent technology shock in

explaining fluctuations. This can be seen from the variance decomposition of consumption that

clearly shows that consumption is mainly accounted for by technology shocks — about 93% in the

short–run — and that the split between the two shocks is about half–half. This can be explained

from the estimated AR(1) process of the technology shock that clearly shows that the persistence of

this shock is high (ρT = 0.91). Hence, it exerts a strong wealth effect on the consumption decision

and it is not surprising that this shock competes with the permanent TFP one.

makes about the stationarity or not of the two technological disturbances. This impossibility result in an admittedly
specific model translates into rejection in the richer model we are studying here.

22When an AR(1) is fitted on the HP–filtered relative price of investment — the conventional measure of the
investment specific shock — we obtain a persistence parameter of 0.8444 and a volatility of the innovation process
of 0.0042. This series is the “total investment” deflator used in Fisher [2002]. We thank Jonas Fisher for kindly
providing us with this series.
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Table 9: Variance Decomposition

Horizon Output Consumption Hours
εΘ νx ζ εΘ νx ζ εΘ νx ζ

PIS–1: ζ=Permanent Investment Specific Shock
1 64 % 36 % 0 % 95 % 5 % 0 % 15 % 85 % 0 %
4 87 % 13 % 0 % 96 % 4 % 0 % 20 % 80 % 0 %
8 93 % 7 % 0 % 97 % 3 % 0 % 34 % 66 % 0 %
20 97 % 3 % 0 % 99 % 1 % 0 % 42 % 58 % 0 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 44 % 56 % 0 %
PIS–2: ζ=Permanent Investment Specific Shock
1 55 % 45 % 0 % 84 % 16 % 0 % 0 % 99 % 1 %
4 76 % 22 % 2 % 87 % 13 % 0 % 12 % 82 % 6 %
8 84 % 13 % 3 % 90 % 10 % 0 % 19 % 72 % 9 %
20 90 % 6 % 4 % 95 % 4 % 1 % 24 % 64 % 11 %
∞ 96 % 0 % 4 % 96 % 0 % 4 % 26 % 63 % 11 %
TIS–1: ζ=Temporary Investment Specific Shock
1 53 % 42 % 5 % 93 % 6 % 1 % 19 % 73 % 8 %
4 76 % 15 % 9 % 95 % 5 % 0 % 12 % 60 % 28 %
8 87 % 9 % 4 % 96 % 4 % 0 % 23 % 57 % 20 %
20 95 % 4 % 1 % 98 % 2 % 0 % 32 % 52 % 16 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 34 % 50 % 16 %
TIS–2: ζ=Temporary Investment Specific Shock
1 56 % 42 % 2 % 84 % 15 % 1 % 0 % 94 % 6 %
4 75 % 20 % 5 % 87 % 12 % 1 % 11 % 73 % 16 %
8 83 % 13 % 4 % 91 % 8 % 1 % 19 % 67 % 14 %
20 92 % 6 % 2 % 96 % 3 % 1 % 25 % 63 % 12 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 26 % 62 % 12 %
T.T.: ζ=Temporary Technology Shock
1 21 % 38 % 41 % 44 % 17 % 39 % 0 % 98 % 2 %
4 29 % 20 % 50 % 51 % 17 % 32 % 4 % 72 % 23 %
8 37 % 15 % 48 % 57 % 13 % 30 % 7 % 66 % 27 %
20 54 % 10 % 36 % 69 % 6 % 25 % 9 % 68 % 23 %
∞ 99 % 0 % 0 % 100 % 0 % 0 % 10 % 66 % 24 %
T.P.: ζ=Temporary Preference Shock
1 27 % 39 % 34 % 55 % 15 % 30 % 1 % 53 % 46 %
4 40 % 20 % 40 % 64 % 13 % 23 % 3 % 34 % 63 %
8 50 % 14 % 36 % 71 % 10 % 19 % 5 % 31 % 64 %
20 70 % 8 % 22 % 82 % 5 % 13 % 7 % 33 % 60 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 8 % 33 % 59 %
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3.4.3 Transitory Preference Shock

We now introduce a transitory preference shock that shifts the labor supply. Preferences are now

given by

Et

∞∑
τ=0

[
log(Ct+τ − bCt+τ−1) + ψeζt+τ (h− ht+τ )

]
,

where ζ is the temporary preference shock, that is assumed to follow a AR(1) process. The model is

estimated so as to match the impulse responses of consumption and output. Again we find that the

market shock accounts for about 40% of output volatility in the short–run and does not contribute

much to the volatility of consumption (less than 15%). As far as output and consumption are

concerned, the introduction of the preference shock mainly undermines the role of the technology

shock. For instance, out of the 61% of output volatility not explained by the market shock about

35% is accounted for by the preference shock. The only dimension along which the preference

shock competes with the market shock is in the determination of hours worked. About half of

hours worked volatility can be accounted for by the preference shock. We however do not view it

as seriously calling into question the potential role of the market shock in the business cycle, as

the preference shock mainly reduces the explanatory power of the permanent shock rather than

undermining the role of the market shock.

3.5 Discussion

One important question relates to the interpretation of “a new market” and the associated empirical

observations with regards to its cyclical properties.23 Our metaphor of new markets describes

all new ways of introducing new products given existing technology or using new technologies,

although our estimations seem to favor the former interpretation rather than the later, as we do

not estimate any significant long run effect of new goods creation. Broadly speaking, a new market

ranges from producing a newly invented product (say cellular phones) to producing old goods with

newly developed uses (fiber–optic cable networks once the use of the internet has exploded) or new

ways of designing old products (say producing shirts of a fashionable new color). Given this broad

interpretation, it is difficult to obtain a comprehensive measure of our new market margin. In a very

narrow sense, one could associate new markets with new firms, and therefore look at Net Business

Formation. Net Business Formation is without ambiguity procyclical in the U.S., which is also one

of our model predictions if we literally associate N with the number of firms. The problem is that

the evidence suggests that smaller firms typically make up the majority of entrants and exits, which

is insufficient to account for a large share of hours worked and output variance at short horizons. A

less restrictive interpretation is to look at variations in the number of establishments and franchises
23We have here benefitted from comments and discussion with Nir Jaimovich.
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as an additional channel affecting the number of “operating units”. The Business Employment

Dynamics database documents job gains and job losses at the establishments level at the quarterly

frequency for the period between the third quarter of 1992 and the second quarter of 2005. Using

these observations, Jaimovich [2004] finds that more than 20% of the cyclical fluctuations in job

creation is accounted for by opening establishments, which is already a sizable number. Another

dimension which could be associated to the new market margin is variation in the number of

franchises. As Lafontaine and Blair [2005] show, numerous firms in a variety of industries have

adopted franchising as a method of operation. Sales of goods and services through the franchising

format amounted to more than 13% of real Gross Domestic Product in the 1980s and 34% of retail

sales in 1986. Jaimovich [2004] documents that the variations in the number of franchises are

procyclical at the business cycle frequency, which is again in line with the predictions of our model.

We take this empirical evidence, together with anecdotal evidence and the evidence obtained by

estimating our model, as supporting the idea that agents expectations about the possibility of new

markets is likely an important driving force of the business cycle.

4 Conclusion

This paper explores whether business cycles fluctuations may sometimes be driven by expectations

of new market openings. We first reviewed a set of observations showing that the business cycle is, to

a large extent, associated with a non-permanent effect on output and hours and that does not move

consumption at all. We then propose a structural interpretation to that shock, in a model where

the opening of new market opportunities causes an economic expansion by favoring competition

for market share. We call such an episode a market rush. We study a simple analytical model

that clearly displays the important qualitative features of the data we have previously highlighted.

Then, a quantitative model built along the same lines and estimated by a simulated method of

moments is exposed. The model suggests that market rush phenomenon is a significant contributor

to business cycle fluctuations and this is robust to the inclusion of many alternative shocks discussed

in the literature.
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