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Marta Bańbura*, European Central Bank
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1 Introduction

Now-casting is defined as the prediction of the present, the very near future and the very recent

past. The term is a contraction for now and forecasting and has been used for a long-time in

meteorology and recently also in economics (Giannone, Reichlin, and Small, 2008).

Now-casting is relevant in economics because key statistics on the present state of the economy

are available with a significant delay. This is particularly true for those collected on a quarterly

basis, with Gross Domestic Product (GDP) being a prominent example. For instance, the first

official estimate of GDP in the United States (US) or in the United Kingdom is published

approximately one month after the end of the reference quarter. In the euro area the corre-

sponding publication lag is 2-3 weeks longer. Now-casting can also be meaningfully applied

to other target variables revealing particular aspects of the state of the economy and thereby

followed closely by markets. An example is labor market variables.

The basic principle of now-casting is the exploitation of the information which is published

early and possibly at higher frequencies than the target variable of interest in order to obtain

an ‘early estimate’ before the official figure becomes available. If the focus is on tracking GDP,

one may look at its expenditure components, like for example personal consumption, which for

the US is available at a monthly frequency, or variables related to the production side such as

industry output. In addition, one may consider information contained in surveys or in forward

looking indicators such as financial variables. The idea here is that both ‘hard’ information

like industrial production and ‘soft’ information like surveys may provide an early indication

of the current developments in economic activity. Surveys are particularly valuable because of

their timeliness: they are the first monthly releases relating to the current quarter. Financial

variables, which are available at very high frequency and, in principle, carry information on

expectations of future economic developments, may also be useful although there is less empir-

ical work on this topic (on this see Andreou, Ghysels, and Kourtellos, 2008) and the present

chapter.

Until recently, the approach used in, for example, policy institutions to obtain an early estimate

of GDP was based on judgement combined with simple models often called “bridge equations”

(see Baffigi, Golinelli, and Parigi, 2004). Bridge equations are essentially regressions relating

quarterly GDP growth to one or a few monthly variables (such as industrial production or

surveys) aggregated to quarterly frequency. Since, typically, only partial monthly information

is available for the target quarter, the monthly variables are forecasted using auxiliary mod-
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els such as ARIMA. In order to exploit information from several monthly predictors bridge

equations are sometime pooled (see, for example, Kitchen and Monaco (2003)).

Although part of this survey describes and evaluates this traditional approach to short-term

forecasting, our focus is on models which provide a comprehensive solution to the problem of

now-casting. In our definition now-casting is the exercise of reading, through the lenses of a

model, the flow of data releases in real time. Ideally, a now-casting model should formalize key

features of how market participants and policy makers read data in real time, which involves:

monitoring many data releases, forming expectations about them and revising the assessment

on the state of the economy whenever realizations diverge sizeably from those expectations.

Starting with Giannone, Reichlin, and Small (2008) and Evans (2005), the literature has pro-

vided a formal statistical framework to embed the now-casting process defined in this broader

sense. Key in this framework is to use a model with a state space representation. Such model

can be written as a system with two types of equations: measurement equations linking ob-

served series to a latent state process, and transition equations describing the state process

dynamics. The latent process is typically associated with the unobserved state of the economy

or sometimes directly with the higher frequency counterpart of the target variable. The state

space representation allows the use of the Kalman filter to obtain an optimal projection for

both the observed and the state variables. Importantly, the Kalman filter can easily cope

with quintessential features of a now-casting information set such as different number of miss-

ing data across series at the end of the sample due to the non-synchronicity of data releases

(“ragged”/“jagged” edge problem), missing data in the beginning of the sample due to only a

recent collection of some data sources, and the data observed at different frequencies. Dealing

with missing data at the beginning of the sample is particularly relevant for emerging markets

where data collection efforts are relatively recent.

An important feature of the framework proposed by Giannone, Reichlin, and Small (2008)

is that it allows to interpret and comment various data releases in terms of the signal they

provide on current economic conditions. This is possible because the Kalman filter generates

projections for all the variables in the the model and therefore allows to compute, for each

data release, a model based surprise, the news. Bańbura and Modugno (2010) have shown

formally how to link such news to the resulting now-cast revision. In this way, the data

releases are weighted in a model based rigorous way and the role of different categories of data

- surveys, financial, production or labor market - in signaling changes in economic activity can

be evaluated. We regard this as a major step ahead with respect to the traditional approach
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of bridge equations.

Since the market as well as policy makers typically watch and comment many data, essentially

following the data flow throughout the quarter, the now-cast model should ideally be able

to handle a high dimensional problem. This is indeed one of the features of the econometric

model proposed by Giannone, Reichlin, and Small (2008). The motivation behind a data-rich

approach is not necessarily the improvement in forecasting accuracy, but rather the ability to

evaluate and interpret any significant information that may affect the now-cast.

In Giannone, Reichlin, and Small (2008) the estimation procedure exploits the fact that relevant

data series, although may be numerous, co-move quite strongly so that their dynamics can be

captured by few common factors. In other words, all the variables in the information set

are assumed to be generated by a dynamic factor model which copes effectively with the so-

called ’curse of dimensionality’ (large number of parameters relative to the sample size). The

estimation method in Giannone, Reichlin, and Small (2008) is the two-step procedure proposed

by Doz, Giannone, and Reichlin (2011), which is based on principal components analysis. More

recent works, as, for example Bańbura and Modugno (2010), apply a quasi maximum likelihood

for which Doz, Giannone, and Reichlin (2012) have established the consistency and robustness

properties when the size of the sample and the size of the cross-section are large.

The model of Giannone, Reichlin, and Small (2008) was first implemented to now-cast GDP

at the Board of Governors of the Federal Reserve in a project which started in 2003. Since

then various versions have been built for different economies and also implemented in other

central banks, including the European Central Bank (ECB, 2008) and in other institutions

as, for example, the International Monetary Fund (Matheson, 2011). There have been many

other studies. For the United States (Lahiri and Monokroussos, 2011); for the aggregate euro

area (Angelini, Bańbura, and Rünstler, 2010; Angelini, Camba-Méndez, Giannone, Reichlin,

and Rünstler, 2011; Bańbura and Modugno, 2010; Bańbura and Rünstler, 2011; Camacho and

Perez-Quiros, 2010); for the single euro area countries, including France (Bessec and Doz, 2011;

Barhoumi, Darn, and Ferrara, 2010), Germany (Marcellino and Schumacher, 2010), Ireland

(D’Agostino, McQuinn, and O’Brien, 2008; Liebermann, 2012b), the Netherlands (de Winter,

2011), see also Rünstler, Barhoumi, Benk, Cristadoro, Reijer, Jakaitiene, Jelonek, Rua, Ruth,

and Nieuwenhuyze (2009); for China (Yiu and Chow, 2010); for the Czech Republic (Arnostova,

Havrlant, Ruzicka, and Toth, 2011); for New Zealand (Matheson, 2010); for Norway (Aastveit

and Trovik, 2012); for Switzerland (Siliverstovs and Kholodilin, 2010; Siliverstovs, 2012).

Results in the literature have provided support for several general conclusions. First, gains
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of institutional and statistical forecasts of GDP relative to the näıve constant growth model

are substantial only at very short horizons and in particular for the current quarter. This

implies that the ability to forecast GDP growth mostly concerns the current (and previous)

quarter. Second, the automatic statistical procedure performs as well as institutional forecasts

which are the result of a process involving models and judgement. These results suggest that

now-casting has an important place in the broader forecasting literature. Third, the now-casts

become progressively more accurate as the quarter comes to a close and the relevant information

accumulates, hence it is important to incorporate new data as soon as they are released. Fourth,

the exploitation of timely data leads to improvement in the now-cast accuracy. In particular,

the relevance of various data types is not only determined by the strength of their relationship

with the target variable, as it is the case in traditional forecasting exercises, but also by their

timeliness. Soft information has been found to be extremely important especially early in the

quarter when hard information is not available. An extensive review of the literature, including

empirical findings, is provided in the survey by Bańbura, Giannone, and Reichlin (2011).

In this chapter we review different statistical approaches to now-casting in more detail and

perform a new empirical exercise.

The focus of the review, as we stressed earlier, is on frameworks which provide a comprehensive

approach to the problem of now-casting and are based on multivariate dynamic models that

can be written in the state space form. Although most applications are based on the dynamic

factor model, we also review papers based on mixed frequency VARs (e.g. Giannone, Reichlin,

and Simonelli (2009) and McCracken and Sekhposyan (2012)) as they fit within the general

framework. By contrast, partial models such as the traditional bridge equations capture only

a limited aspect of the now-casting process. However, since these models are still used by

practitioners, we include them in our review and also discuss recent refinements such as MIDAS

equations (used for now-casting by e.g. Clements and Galvão, 2009, 2008; Kuzin, Marcellino,

and Schumacher, 2011).

In the empirical part, we propose and evaluate a daily dynamic factor model for now-casting

US GDP with real-time data and provide illustrations on how it can be used for the reading

of the real-time data flow, including not only variables available at a monthly frequency like

in previous literature, but also daily financial variables and those weekly variables which are

typically watched by the market.

The chapter is organized as follows. The second section defines the problem of now-casting in

general and discusses different approaches used in the literature to deal with it. In the third
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section, we define the daily model and provide results for the empirical application. Section

four concludes. Two appendixes contain, respectively, technical details on the implementation

of the model and further empirical results.

2 Now-casting: problem and overview of approaches

Now-casting essentially involves obtaining a projection of a variable of interest on the available

information set, say Ωv. Index v can be associated with time of a particular data release. The

data vintage index v should not be confused with the model time index t. Due to frequent

and non-synchronous statistical data releases v is of high frequency and is irregularly spaced.

Several releases within a single day could occur.

Typically the variable of interest is an indicator collected at rather low frequency and subject

to a significant publication lag. The aim is to obtain its “early estimate” on the basis of high

frequency, more timely information. This has a number of implications regarding the features of

the information set Ωv. First, Ωv could contain data collected at a wide range of frequencies,

from daily to annual. Second, as different types of data are released in a non-synchronous

manner and with different degrees of delay, the time of the last available observation differs

from series to series. Key in now-casting is to use all the available information. This results in

a so called “ragged” or “jagged” edge of Ωv. Finally, the information set could be very large.

Different solutions have been proposed to the problem of mixed frequency data, we review

some of them in the context of now-casting in the following sections. We focus in particular on

the approaches that treat the low frequency data as high frequency with periodically missing

observations and specify the underlying model dynamics at high frequency. To this end, for

the low frequency variables their high frequency unobserved “counterparts” are introduced. In

this, the usual convention is to index the observations of low frequency variables by t’s referring

to the end of the respective observation intervals.

Before explaining the details, let us introduce some notation. For simplicity, in the main text

we assume that the observation intervals for variables collected at low frequency are constant

across time, i.e. each month or quarter would have a constant number of days. The case of

irregular intervals is discussed in the Appendix. For some variable y, we will denote by ykt its

“counterpart” defined at an observation interval of k periods. Note that it does not necessarily

mean that the variable is collected at this interval. For example, we could have an indicator

collected at monthly frequency expressed as a quarterly concept. In case y is collected at
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an interval k we will observe ykt for t = k, 2k, 3k, . . .. In other words, the observations of ykt

will be periodically missing. A vector of N variables, possibly defined at different observation

intervals, will be denoted by Y KY
t = (yk1t,1, y

k2
t,2, . . . , y

kN
t,N )′. For each variable in the information

set, the high frequency, possibly unobserved, construct will be denoted by yt = y1t and the

corresponding vector of N variables by Yt = (yt,1, yt,2, . . . , yt,N )′.

Note that the time unit associated with t will depend on the particular framework. For some

models t would correspond to months while for the others to days, for example. For a given

economic concept, the corresponding k will depend on the time unit adopted for the model. For

example, for industrial production, which is collected at monthly frequency, k = 1 in case of a

monthly model and k = 22 (on average) if the model is specified at daily frequency. Typically

some of the variables in Ωv will be observed at high frequency, i.e. for some n we will have

kn = 1, but in general this is not a necessary condition.1

Given this notation, the information set can be defined as Ωv = {yknt,n , t = kn, 2kn, . . . , Tn(v), n =

1, 2, . . . , N}. Tn(v) is a multiple of kn and refers to the last observation of variable n in the

data vintage v. Due to mixed frequency of the data-set and non-synchronous releases we will

have in general Tn(v) ̸= Tm(v) for some n ̸= m leading to the ragged edge described above.

As some of the approaches will be focused on one particular variable of interest, without the

loss of generality, we will assume that it is the first variable, yk1t,1.

Scalar and vector random variables will be denoted by lower and upper case letters respectively.

Parameters will be denoted by Greek letters.

2.1 Temporal aggregation

Since key element of now-casting methodology is dealing with mixed frequency data, the issue

of temporal aggregation arises.

The focus of this chapter will be on the approaches in which the model is specified at high

frequency. Therefore it is important to understand the relation between the high frequency

variables, yt, which for key economic concepts are unobserved, and the corresponding observed

low frequency series, ykt , k > 1. The relation depends on whether the corresponding indicator

is a flow or a stock variable and on how it is transformed before entering the model. As most of

the now-casting applications are based on models specified for stationary variables,2 ykt often

1For example, the model of Aruoba, Diebold, and Scotti (2009) in the current version is specified at daily
frequency but the highest frequency of the data is weekly.

2See e.g. Seong, Ahn, and Zadrozny (2007) for an approach with non-stationary data.
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corresponds to a (log-)differenced, at k interval, version of some raw series zkt . Let zt denote

the high frequency counterpart of zkt . For the stock variables, such as e.g. price indexes, the

following holds:

zkt = zt , t = k, 2k, ... ,

while the flow variables, most notably GDP, we have:

zkt =
k−1∑
i=0

zt−i , t = k, 2k, ... ,

see e.g. Harvey (1989). In case ykt is a differenced version of zkt , we have for the stock variables:

ykt = zkt − zkt−k = zt − zt−k =

k−1∑
i=0

∆zt−i =

k−1∑
i=0

yt−i =

k−1∑
i=0

ωk,s
i yt−i , t = k, 2k, . . . ,

where yt = ∆zt, ω
k,s
i = 1 for i = 0, 1, . . . , k − 1 and ωk,s

i = 0 otherwise. For the flow variables

we have that

ykt = zkt − zkt−k =

k−1∑
i=0

zt−i −
2k−1∑
i=k

zt−i =

=

k−1∑
i=0

(
i+ 1

)
yt−i +

2k−2∑
i=k

(
2k − i− 1

)
yt−i =

2k−2∑
i=0

ωk,f
i yt−i , t = k, 2k, . . . ,

where ωk,f
i = i + 1 for i = 0, . . . , k − 1; ωk,f

i = 2k − i − 1 for i = k, . . . , 2k − 2 and ωk,f
i = 0

otherwise. If zkt is a stationary flow variable the relation is the same as in the case of differenced

stock variables.

Note that in case ykt is a log-differenced flow variable, we follow the approximation of Mariano

and Murasawa (2003):

ykt = log
(
zkt

)
− log

(
zkt−k

)
= log

(
k−1∑
i=0

zt−i

)
− log

(
2k−1∑
i=k

zt−i

)
≈

≈
k−1∑
i=0

log (zt−i)−
2k−1∑
i=k

log (zt−i) =
2k−2∑
i=0

ωk,f
i yt−i , t = k, 2k, . . . ,

where yt = ∆ log (zt). The approximation allows to keep the observational constraints stem-

ming from the temporal aggregation linear.3 For example, for quarterly GDP in a monthly

model we would have:

y3t = yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4 , t = 3, 6, . . . ,

see e.g. Bańbura, Giannone, and Reichlin (2011), Bańbura and Modugno (2010), Kuzin,

Marcellino, and Schumacher (2011) or Mariano and Murasawa (2003).

3Proietti and Moauro (2006) propose to use a nonlinear smoothing algorithm to impose the temporal con-
straint exactly. Proietti (2011) further shows how to account for cross-sectional observational constraints.
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2.2 Joint models in a state space representation

The key feature of this type of approaches is that a joint model for Y KY
t is specified and that

it has a state space representation:

Y KY
t = µ+ ζ(θ)Xt +Gt , Gt ∼ i.i.d. N(0,ΣG(θ)) , (1)

Xt = φ(θ)Xt−1 +Ht , Ht ∼ i.i.d. N(0,ΣH(θ)) , (2)

where the measurement equation (1) links the vector of observed variables, Y KY
t , to a vector of

possibly unobserved state variables, Xt, and the transition equation (2) specifies the dynamics

of the latter (see e.g. Harvey, 1989, for a comprehensive treatment of state space models).

We do not add index t in order not to complicate the notation but both the matrices of the

coefficients, ς(θ) and φ(θ), as well as the covariance matrices of the disturbances, ΣG(θ) and

ΣH(θ), could be time-varying.

Given a model with a representation (1)-(2) and the parameters θ, the Kalman filter and

smoother provide conditional expectations of the state vector on the information set Ωv and

the associated precision:4

Xt|Ωv
= Eθ

[
Xt|Ωv

]
Pt|Ωv

= Eθ

[(
Xt − Eθ

[
Xt|Ωv

])(
Xt − Eθ

[
Xt|Ωv

])′]
.

Importantly, the Kalman filter and smoother can efficiently deal with any missing observations

observations in Y KY
t and provide the conditional expectation for those. Consequently, now-

casts or forecasts can be easily obtained for the target variable and for the predictors. As

in this framework the problems of mixed frequency and ragged edge are essentially missing

data problems, they are easily solved by Kalman filter and smoother apparatus. Last but not

least, joint state space representation also allows to derive model based news of statistical data

releases and to link them to the now-cast revision, see Section 2.3.

ζ(θ)Pt|Ωv
ζ(θ)′ is sometimes referred to as “filter uncertainty” (Giannone, Reichlin, and Small,

2008) as it captures the part of the uncertainty underlying the now-cast of Y KY
t that is asso-

ciated with signal extraction.5

Different versions of the general model (1)-(2) have been considered in the literature.

4In case the disturbances are not Gaussian the Kalman smoother provides the minimum mean square linear
(MMSLE) estimates.

5Note that, for given set of parameters θ and for t sufficiently large, such that the Kalman smoother has
approached its steady state, filter uncertainty can be considered time invariant in the sense that it will not
depend on t but rather on the shape of the ragged edge in Ωv with respect to the target quarter, see Bańbura
and Rünstler (2011) for a formal explanation.
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2.2.1 Factor model

As stressed above the real-time data flow is inherently high dimensional. A a consequence it

is important to use a a parsimonious model that allows to avoid parameter proliferation but

at the same time is able to capture the salient features of the data. A dynamic factor model

is particularly suitable in this context. In a dynamic factor model, each series is modeled as

the sum of two orthogonal components: the first, driven by a handful of unobserved factors

captures the joint dynamics and the second is treated as an idiosyncratic residual. If there is

a high degree of co-movement amongst the series, the bulk of the dynamics of any series can

be captured by the few factors. There is considerable empirical evidence that indeed this is

the case for large panels of macroeconomic variables (see Sargent and Sims (1977); Giannone,

Reichlin, and Sala (2004); Watson (2004) and, for a recent survey see Stock and Watson (2011))

and this is why we have chosen this modeling strategy here.

The most common version in the context of now-casting specifies that the high frequency

variables, Yt, have a factor structure and that the factors, Ft, follow a vector autoregressive

(VAR) process:

Yt = µ+ ΛFt + Et , Et ∼ i.i.d. N(0,ΣE) , (3)

Ft = Φ(L)Ft + Ut , Ut ∼ i.i.d. N(0,ΣU ) . (4)

The latter feature can be particularly important for now-casting, as in the presence of ragged

edge, both cross-sectional and “dynamic” information is useful. ΣE is assumed to be diagonal

but, as discussed below, the estimates are robust to violations of this assumption.

This is the type of model that Giannone, Reichlin, and Small (2008) have proposed to now-cast

GDP from a large set of monthly indicators. In their application Yt contains only monthly (ob-

served) variables, hence, equations (3)-(4) constitute a state space representation and Kalman

filter and smoother can be run to obtain the estimates of the factors. The now-casts are then

obtained via a regression of GDP on temporally aggregated factor estimates:

yk1t,1 = α+ βF k1
t|Ωv

+ ek1t , t = k1, 2k1, ... . (5)

Giannone, Reichlin, and Small (2008) estimate the state space representation (3)-(4) by a so-

called two-step procedure. In the first step, the parameters of the state space representation

are estimated using principal components of a “balanced” panel of Yt as factor estimates.

The balanced panel is obtained by considering only the sample for which all observations are
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available.6 In the second step, factors are re-estimated by applying the Kalman smoother to

the entire information set.

As stressed in the introduction, this approach has been widely used and applied for different

countries. Bańbura and Rünstler (2011) and Angelini, Bańbura, and Rünstler (2010) modify it

slightly by including quarterly variables into the state space representation using the temporal

aggregator variables as explained below.

Doz, Giannone, and Reichlin (2012) show that large systems like (3)-(4) can be also estimated

by maximum likelihood. They use the Expectation Maximization (EM) algorithm to obtain the

maximum likelihood estimates. The EM algorithm is a popular tool to estimate the parameters

for models with unobserved components and/or missing observations, such as (3)-(4). The

principle is to write the likelihood in terms of both observed and unobserved data, in this

case the state variables, and to iterate between two operations: (i) compute the expectation of

the log-likelihood (sufficient statistics) conditional on the data using the parameter estimates

from the previous iteration (ii) re-estimate the parameters through the maximization of the

expected log-likelihood. In case of (3)-(4) this boils down to iterating the two-step procedure

until convergence, at each step correcting for the uncertainty associated with the estimation

of the common factors, see Watson and Engle (1983) and Shumway and Stoffer (1982).

Maximum likelihood has a number of advantages compared to the principal components and the

two-step procedure. First it is more efficient for small systems. Second, it allows to deal flexibly

with missing observations. Third, it is possible to impose restrictions on the parameters. For

example, Bańbura and Modugno (2010) impose the restrictions on the loadings to reflect the

temporal aggregation. Bańbura, Giannone, and Reichlin (2011) introduce factors specific to

groups of variables.

Doz, Giannone, and Reichlin (2011) and Doz, Giannone, and Reichlin (2012) show consistency

of the two-step and maximum likelihood estimates, respectively. The asymptotic properties

are analyzed under different sources of misspecification: omitted serial correlation of the ob-

servations, cross-sectional correlation of the idiosyncratic components and non-normality. It is

shown that the effects of misspecification on the estimation of the common factors is negligible

for large sample size (T ) and the cross-sectional dimension (N). We would like to stress here

that large-cross section is just an asymptotic device to study the properties of the estimates

when more data are included and hence it does not mean that robustness is achieved only when

6Reduced rank of the disturbances in the factor VAR is often imposed. As discussed in Forni, Giannone,
Lippi, and Reichlin (2009) this feature enforces dynamic heterogeneity in the factor structure.
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the number of variables approaches infinity. How large is large is a finite sample question, and

Monte Carlo exercises of Doz, Giannone, and Reichlin (2011) and Doz, Giannone, and Reichlin

(2012) show that substantial robustness is achieved already with a handful of variables.

These results provide theoretical ground for the use of maximum likelihood estimation for

factor models in now-casting since they point to its robustness to misspecification. Maxi-

mum likelihood for a factor model adapted to the now-casting problem has been proposed by

Bańbura and Modugno (2010) and this is the approach we use in the empirical application

of this chapter. Camacho and Perez-Quiros (2010) and Frale, Marcellino, Mazzi, and Proietti

(2011), for example, have also applied maximum likelihood estimation although with a different

implementation.

2.2.2 Model with daily data

Most of the now-casting applications have been based on monthly and quarterly variables.

Modugno (2011) develops a model with daily, weekly and monthly stock data for now-casting

inflation. In this chapter, we generalize this framework by adding flow variables. As above we

assume that the high frequency concepts follow a factor model (3)-(4). Consequently for nth

variable defined at kn interval we have:

yknt,n =

2kn−2∑
i=0

ωkn,·
i yt−i,n =

2kn−2∑
i=0

ωkn,·
i

(
Λn,· Ft−i + et−i,n

)
,

where ωkn,·
i = ωkn,f

i for the flow variables and ωkn,·
i = ωkn,s

i for the stock variables. Λn,· denotes

the nth row of Λ.

To limit the size of the state vector, temporal aggregator variables for Ft are constructed. We

need separate aggregators for each frequency and for stock and flow variables, F k,f
t and F k,s

t ,

k = kq, km, kw, where k = kq, km and kw refer to the (average) number of days in a quarter,

month and week, respectively.7 These variables aggregate recursively Ft so that at the end of

the respective period we have:

F k,·
t =

2k−2∑
i=0

ωk,·
i Ft−i , t = k, 2k, . . . , k = kq, km, kw .

The details on how the aggregators are constructed are provided in the Appendix.

Note that analogously to the common component, the idiosyncratic error in the measurement

equation will be a moving average of the daily et,n. However, in the estimation we will assume

that at k interval, at which it is defined, it is a white noise.

7In fact, we do not have quarterly stock variables in the data-set.
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Another source of misspecification is due to conditional heteroskedasticity and fat tails which is

typical of daily data. Fortunately, as discussed in Section 2.2, the factor model is robust to those

misspecifications when the factors are extracted from many variables (see Doz, Giannone, and

Reichlin, 2012). However, reducing misspecifications by explicitly modeling key data features

might give sizeable advantages in finite samples. Important directions for future research,

especially for daily data, consists in modeling stochastic volatility and rare big shocks, see

Marcellino, Porqueddu, and Venditti (2012) and Curdia, Del Negro, and Greenwald (2012).

Let Y k,·
t collect the variables observed at interval k (flows or stocks). The measurement equation

can be written as follows:

Y
kq ,f
t

Y km,f
t

Y km,s
t

Y kw,f
t

Y kw,s
t

Y kd
t


=



Λ̃q,f 0 0 0 0 0

0 Λ̃m,f 0 0 0 0
0 0 Λm,s 0 0 0

0 0 0 Λ̃w,f 0 0
0 0 0 0 Λw,s 0
0 0 0 0 0 Λd





F̃
kq ,f
t

F̃ km,f
t

F km,s
t

F̃ kw,f
t

F kw,s
t

Ft


+ EKY

t . (6)

For the flow variables an auxiliary aggregator variable, F̄ k,f
t , is necessary: F̃ k,f

t = (F k,f
t F̄ k,f

t )′

and Λ̃·,f = (Λ·,f 0), see the appendix for details.

The coefficients of the transition equation are time-varying:

I2r 0 0 0 0 Wkq ,f
t

0 I2r 0 0 0 Wkm,f
t

0 0 Ir 0 0 Wkm,s
t

0 0 0 I2r 0 Wkw,f
t

0 0 0 0 Ir Wkw,s
t

0 0 0 0 0 Ir





F̃
kq ,f
t

F̃ km,f
t

F km,s
t

F̃ kw,f
t

F kw,s
t

Ft


=



Ikq ,f
t 0 0 0 0 0

0 Ikm,f
t 0 0 0 0

0 0 Ikm,s
t 0 0 0

0 0 0 Ikw,f
t 0 0

0 0 0 0 Ikw,s
t 0

0 0 0 0 0 Φ





F̃
kq ,f
t−1

F̃ km,f
t−1

F km,s
t−1

F̃ kw,f
t−1

F kw,s
t−1

Ft−1


+



0
0
0
0
0
Ut

 , (7)

where W ·,·
t contain appropriate aggregation weights and I ·,·

t are matrices of zeros and ones, see

the appendix for details.8

The model is estimated by maximum likelihood using the EM algorithm, as explained in the

appendix. Initial parameter values for the algorithm are obtained using principal components

as factor estimates. To extract the principal components the missing observations are “filled

in” using splines and then the data are filtered to reflect different aggregation intervals.

8The transition equation is obtained by pre-multiplying (7) by the inverse of the left-hand-side matrix.
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2.2.3 Mixed frequency VAR

Another type of model that can be cast in a state space representation is a VAR. Different

approaches have been considered to deal with the issue of mixed frequency. One solution,

analogous to the approach explained above, is to specify that the high frequency concepts

follow a VAR:

Ψ(L)
(
Yt − µ

)
= Et , Et ∼ i.i.d. N(0,ΣE)

and to derive the measurement equation using the (approximate) temporal aggregation rela-

tionships between the observed variables and Yt as explained in Section 2.1, see e.g. Mariano

and Murasawa (2010). As in the case of factor models explained above, Kalman filter and

smoother can be used to obtain the now-casts. Giannone, Reichlin, and Simonelli (2009) and

Kuzin, Marcellino, and Schumacher (2011) apply this type of model to now-cast euro area

GDP with monthly indicators. Earlier applications include Zadrozny (1990) and Mittnik and

Zadrozny (2004).

Another solution is sometimes referred to as “blocking”, see e.g. Chen, Anderson, Deistler,

and Filler (2012). The model is specified at low frequency and the high frequency information

is “distributed” into multiple series. For example, in a system with monthly and quarterly

variables, blocking consists in having three different time series for each monthly variable, one

for each of the three months of the quarter. For a detailed analysis of blocked linear systems

see Chen, Anderson, Deistler, and Filler (2012). McCracken and Sekhposyan (2012) have used

this approach for now-casting with a large Bayesian VAR.

VAR is a less parsimonious specification than a factor model. For large information sets two

solutions to the curse of dimensionality problem could be adopted. Either the forecasts from

many smaller systems could be combined or Bayesian shrinkage could be employed to avoid

over-fitting in a large system, see Bańbura, Giannone, and Reichlin (2010), Giannone, Lenza,

and Primiceri (2012) or Koop (2011) (see also the Chapter on Bayesian VAR in this volume

by Karlsson, 2012). Two recent papers that have used Bayesian shrinkage to handle large

information sets in the context of now-casting are Bloor and Matheson (2011) and McCracken

and Sekhposyan (2012).

2.3 Now-cast updates and news

We argue that now-casting goes beyond producing a single prediction for a reference period.

The aim is rather to build a framework for the reading of the flow of data releases in real time.
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At each time that new data become available, a now-casting model produces an estimate

of the variable of interest, say the current quarter growth rate of GDP, thereby providing a

sequence of updates for this fixed event. Within a state space framework, the same model also

produces forecasts for all variables we are interested in tracking so as to allow extracting the

news or the “unexpected” component from the released data. Having model based news for

all variables allows obtaining the revision of the GDP now-cast as the weighted sum of those

news where the weights are estimated by the model. The framework therefore provides a key

for the understanding of changes in the estimates of current economic activity over time and

helps evaluating the significance of each data publication.

Following Bańbura and Modugno (2010) we can explain these ideas formally.

Let us consider two consecutive data vintages, Ωv and Ωv+1. The information sets Ωv and

Ωv+1 can differ for two reasons: first, Ωv+1 contains some newly released figures, {y
knj

tj ,nj
, j =

1, . . . , Jv+1}, which were not available in Ωv; second, some of the data might have been revised.

To simplify the notation, in what follows we assume that no past observations for the variable

of interest yk1t,1 are contained in the release and that knj = 1, j = 1, . . . , Jv+1 so that y
knj

tj ,nj
=

ytj ,nj . The derivations can be modified to a general case in a straightforward manner. More

importantly, we abstract from data revisions and therefore we have:

Ωv ⊂ Ωv+1 and Ωv+1\Ωv = {ytj ,nj , j = 1, . . . , Jv+1},

hence the information set is “expanding”. Note that since different types of data are charac-

terized by different publication delays, in general we will have tj ̸= tl for some j ̸= l.

Let us now look at the two consecutive now-cast updates, E
[
yk1t,1|Ωv

]
and E

[
yk1t,1|Ωv+1

]
. The

new figures, {ytj ,nj , j = 1, . . . , Jv+1}, will in general contain some new information on yk1t,1 and

consequently lead to a revision of its now-cast. From the properties of conditional expectation

as an orthogonal projection operator, it follows that:

E
[
yk1t,1|Ωv+1

]
︸ ︷︷ ︸
new forecast

= E
[
yk1t,1|Ωv

]
︸ ︷︷ ︸
old forecast

+E
[
yk1t,1|Av+1

]
︸ ︷︷ ︸

revision

,

where

Av+1 = [av+1,1 . . . av+1,Jv+1 ]
′, av+1,j = ytj ,nj − E

[
ytj ,nj |Ωv

]
, j = 1, . . . , Jv+1.

Av+1 represents the part of the release {ytj ,nj , j = 1, . . . , Jv+1}, which is “orthogonal” to the

information already contained in Ωv. In other words, it is the “unexpected” (with respect to

15



the model), part of the release. Therefore, we label Av+1 as the news. Note that it is the news

and not the release itself that leads to now-cast revision. In particular, if the new numbers

in Ωv+1 are exactly as predicted, given the information in Ωv, or in other words “there is no

news”, the now-cast will not be revised.

We can further develop the expression for the revision, that is the difference between the new

and the old now-cast, as:

E
[
yk1t,1|Av+1

]
= E

[
yk1t,1A

′
v+1

]
E
[
Av+1A

′
v+1

]−1
Av+1 .

In what follows we abstract from the problem of parameter uncertainty.

For the model written as (1)-(2) with a diagonal ΣG, this can be further developed as:

E
(
yk1t,1av+1,j

)
= ζ1,·E

[
(Xt − E [Xt|Ωv])

(
Xtj − E

[
Xtj |Ωv

])′ ]
ζ ′nj ,· and

E (av+1,jav+1,l) = ζnj ,·E
[ (

Xtj − E
[
Xtj |Ωv

])
(Xtl − E [Xtl |Ωv])

′
]
ζ ′nl,· +ΣG,jl1j=l ,

where ΣG,jl is the element of the ΣG from the jth row and kth column. Kalman filter and

smoother provide appropriate expectations.

As a result, we can find a vector Dv+1 = [δv+1,1, · · · , δv+1,Jv+1 ] such that the following holds:

E
[
yk1t,1|Ωv+1

]
− E

[
yk1t,1|Ωv

]
︸ ︷︷ ︸

revision

= Dv+1Av+1 =

Jv+1∑
j=1

δv+1,j

(
ytj ,nj − E

[
ytj ,nj |Ωv

]︸ ︷︷ ︸
news

)
. (8)

In other words, the revision can be decomposed as a weighted average of the news in the latest

release. What matters for the revision is both the size of the news as well as its relevance

for the variable of interest, as represented by the associated weight δv+1,j . Formula (8) can

be considered as a generalisation of the usual Kalman filter update equation (see e.g. Harvey,

1989, eq. 3.2.3a) to the case in which “new” data arrive in a non-synchronous manner.

Note that filter uncertainty for yk1t,1 decreases with the new release and the reduction can be

decomposed along similar lines.

Relationship (8) enables us to trace sources of forecast revisions.9 More precisely, in the

case of a simultaneous release of several (groups of) variables it is possible to decompose the

9Note, that the contribution from the news is equivalent to the change in the overall contribution of the
series to the forecast (the measure proposed in Bańbura and Rünstler, 2011) when the correlations between the
predictors are not exploited in the model. Otherwise, those measures are different. In particular, there can
be a change in the overall contribution of a variable even if no new information on this variable was released.
Therefore news is a better suited tool for analyzing the sources of forecasts revisions, see Bańbura and Modugno
(2010) for the details.
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resulting forecast revision into contributions from the news in individual (groups of) series.10

In addition, we can produce statements like e.g. “after the release of industrial production,

the forecast of GDP went up because the indicators turned out to be (on average) higher than

expected”.11

2.4 “Partial” models

In contrast to approaches described in Section 2.2, the methodologies that we label as “partial”

do not specify a joint model for the variable of interest and for the predictors. One limitation of

partial models is that without a joint representation the model based news of releases and their

impact on the now-cast cannot be derived. Other drawbacks include the need for auxiliary

models or for separate set of parameters for each data vintage. In spite of those limitation we

review them here because they have a long tradition in policy institutions, in particular central

banks.

Again let us assume for simplicity that kn = 1, n ̸= 1 so that yknt,n = yt,n. In other words, all

the predictors are observed at the same, high frequency. The methodologies presented below

typically can be generalized to relax this restriction.

The following “partial” models have been studied in the literature:

2.4.1 Bridge equations

In this type of model, the now-cast and forecasts of yk1t,1 are obtained via the following regression:

yk1t,1 = α+ βyk1t,n + ek1t , t = k1, 2k1, ... , (9)

where yk1t,n is a predictor aggregated to the lower frequency, i.e. the frequency of the target

variable. Hence the mixed frequency problem is solved by temporal aggregation of the predic-

tors to the lower frequency. To handle ragged edge auxiliary models, such as ARMA or VAR,

are used to forecast yt,n to close the target period of interest.

This is the “traditional” now-casting tool, popularly employed at central banks to obtain early

estimates of GDP or its components. The predictors are typically monthly, see e.g. Kitchen and

Monaco (2003), Parigi and Golinelli (2007), Parigi and Schlitzer (1995) and Baffigi, Golinelli,

and Parigi (2004).

10If the release concerns only one group or one series, the contribution of its news is simply equal to the
change in the forecast.

11This holds of course for the indicators with positive entries in δv+1,j .
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Equation (9) is typically estimated by the OLS. It can be further extended to include more

predictors or the lags of the dependent variable. In case the information set is large, forecast

combination is often performed (Kitchen and Monaco, 2003; Diron, 2008; Angelini, Camba-

Méndez, Giannone, Reichlin, and Rünstler, 2011; Rünstler, Barhoumi, Benk, Cristadoro, Rei-

jer, Jakaitiene, Jelonek, Rua, Ruth, and Nieuwenhuyze, 2009). Bridge equations can be also

combined in a so-called bottom-up approach where one now-casts GDP by aggregating the

now-cats of its components exploiting national accounts identities (see Hahn and Skudelny,

2008; Drechsel and Scheufele, 2012; Baffigi, Golinelli, and Parigi, 2004).

Note that the model of Giannone, Reichlin, and Small (2008) can be also interpreted as “bridg-

ing with factors” as the factor estimates obtained by the Kalman filter and smoother would

be plugged into an equation similar to (9) to obtain the now-casts, cf. equation (5).

2.4.2 MIDAS-type equations

In contrast to the previous approach in a MIDAS type model the predictors are included in

the regression at their original observation frequency:

yk1t,1 = α+ βΓ(L, θ)yt−hn,n + ek1t , t = k1, 2k1, ..., (10)

where Γ(L, θ) is a lag polynomial. Since for large k1 many lags of the explanatory variable

might be required, key in this approach is that Γ(L, θ) is parsimoniously parameterised. Vari-

ous versions have been proposed (Ghysels, Santa-Clara, Sinko, and Valkanov, 2003), including

exponential Almon polynomial for which Γ(L, θ) =
∑M

m=1 γ(m, θ)Lm with θ = (θ1, θ2) and

γ(m, θ) = exp(θ1m+θ2m2)∑M
m=1 exp(θ1m+θ2m2)

. In contrast to approaches explained above, MIDAS-type re-

gression implies that the temporal aggregation weights are data driven.

Regarding the problem of ragged edge, the solution in this type of approach can be thought

of as re-aligning each time series. The time series with missing observations at the end of

the sample are shifted forward in order to obtain a balanced data-set with the most recent

information.12 The parameters in equation (10) depend on hn, which is determined by the

difference between the forecast target period and the period of the last observation of the

predictor. As a consequence, separate models need to be estimated for different data vintages

as the corresponding hn vary. The case of hn < k1, i.e. when some data referring to the

target quarter are available, is sometimes labelled as MIDAS with leads (Andreou, Ghysels,

and Kourtellos, 2008).

12Re-aligning has been a popular strategy do deal with ragged-edge data, see e.g. Altissimo, Bassanetti,
Cristadoro, Forni, Hallin, Lippi, Reichlin, and Veronese (2001); Altissimo, Cristadoro, Forni, Lippi, and Veronese
(2010); de Antonio Liedo and Muoz (2010).
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Applications of this type of model to now-casting include Clements and Galvão (2009), Clements

and Galvão (2008) or Kuzin, Marcellino, and Schumacher (2011) who use monthly indicators

to forecast GDP. Recently, Andreou, Ghysels, and Kourtellos (2008) also include daily finan-

cial variables to the equation. Equation (10) is typically estimated by non-linear least squares.

Clements and Galvão (2008) propose how to add a lag of the low frequency variable in or-

der to avoid a seasonal response of the dependent variable to the predictors. They use the

Broyden-Fletcher-Goldfarg-Shanno method to obtain the estimates of the parameters.

The MIDAS equations suffer from the curse of dimensionality problem and can include only a

handful of variables. Forecast combination is a popular strategy to deal with large information

sets (see e.g. Andreou, Ghysels, and Kourtellos, 2008).

As an alternative, Marcellino and Schumacher (2010) propose to now-cast GDP from the

following equation:

yk1t,1 = α+ βΓ(L, θ)Ft−hF |Ωv
+ ek1t , t = k1, 2k1, ... ,

where Ft|Ωv
are factors estimated from a set of monthly predictors following the methodology

of Giannone, Reichlin, and Small (2008) and hF corresponds to the difference between the

forecast target period and the latest observation in the predictor set.

As we have already remarked, in order to understand why and how now-casts change with the

arrival of new information it is important to have a joint model that allows to form expectations

and hence derive the news component of data releases and their impact on the now-cast.

Attempts to circumvent the problem within partial models has to be necessarily based on a

heuristic procedure. For example Ghysels and Wright (2009) construct news using market

expectations. The latter are linked to the change in the forecast by estimating additional

auxiliary regressions.
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3 Empirical application

The aim of the empirical application is is to establish whether daily and weekly variables

contribute to the precision of the now-cast of quarterly GDP growth and to use our framework

to study the extent to which stock prices are connected with macroeconomic variables.

The now-casting framework is the appropriate one for studying the role of financial variables for

macro forecasting since it takes into account the timeliness of financial information. Although

the role of financial variables for the forecast of real economic conditions has been studied

extensively in the forecasting literature (see Stock and Watson, 2003; Forni, Hallin, Lippi,

and Reichlin, 2003), results are typically based on models which do not take into account

the publication lags associated with different data series and therefore miss timeliness as an

essential feature of financial information in real-time forecasting. However, most of the now-

casting studies we have reviewed here are based on monthly models. Daily variables, when

included, are first converted to monthly frequency hence their advantage due to timeliness

might be partly lost (see e.g. Giannone, Reichlin, and Small, 2008; Bańbura and Rünstler,

2011). This study corrects this feature by treating all data at their original frequency.

3.1 Data

We are considering 24 series of which only GDP is quarterly. Table 1 provides the list of

variables, including the observation frequency and the transformation we have adopted. Among

monthly data we include industrial production, labor market data, a variety of surveys but also

price series, indicators of the housing market, trade and consumption statistics. The weekly

series are initial jobless claims and the Bloomberg consumer comfort index. We have aimed

at selecting the “headline” macroeconomic variables. Accordingly, the series we collected are

marked on Bloomberg website as “Market Moving Indicators”. The daily financial variables

include S&P 500 stock price index, short and long-term interest rates, effective exchange rate

and the price of oil. To give an idea on the timeliness of each macroeconomic variable Table 1

also provides the publication delay, i.e. the difference (in days) between the end of the reference

period and the date of the respective release for January 2011.13 We can observe the typical

pattern according to which soft data, notably surveys, are published more timely than the

hard data.

Let us make some remarks about the criteria used for the selection of the macroeconomic

13The release dates typically vary from month to month. For example, industrial production is released
between the 14th and 18th day of each month.
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Table 1: Data

No Name Frequency Publication delay Transformation
(in days after reference period) log diff

1 Real Gross Domestic Product quarterly 28 x x
2 Industrial Production Index monthly 14 x x
3 Purchasing Manager Index, Manufacturing monthly 3 x
4 Real Disposable Personal Income monthly 29 x x
5 Unemployment Rate monthly 7 x
6 Employment, Non-farm Payrolls monthly 7 x x
7 Personal Consumption Expenditure monthly 29 x x
8 Housing Starts monthly 19 x x
9 New Residential Sales monthly 26 x x
10 Manufacturers’ New Orders, Durable Goods monthly 27 x x
11 Producer Price Index, Finished Goods monthly 13 x x
12 Consumer Price Index, All Urban Consumers monthly 14 x x
13 Imports monthly 43 x x
14 Exports monthly 43 x x
15 Philadelphia Fed Survey, General Business Conditions monthly -10 x
16 Retail and Food Services Sales monthly 14 x x
17 Conference Board Consumer Confidence monthly -5 x
18 Bloomberg Consumer Comfort Index weekly 4 x
19 Initial Jobless Claims weekly 4 x x
20 S&P 500 Index daily 1 x x
21 Crude Oil, West Texas Intermediate (WTI) daily 1 x x
22 10-Year Treasury Constant Maturity Rate daily 1 x
23 3-Month Treasury Bill, Secondary Market Rate daily 1 x
24 Trade Weighted Exchange Index, Major Currencies daily 1 x

Notes: The publication delays are based on the data releases in January 2011. Negative numbers for surveys mean
that they are released before the reference month is over.

variables. We only include the headlines of each macroeconomic report since these are the

data followed by the market and extensively commented by the newspapers. For example,

for the release of industrial production and capacity utilization we only include total indexes

hence disregarding the sectoral disaggregation. The disaggregated data for each release were

considered in Giannone, Reichlin, and Small (2008) whose universe of data included around

200 time series. Bańbura and Modugno (2010) and Bańbura, Giannone, and Reichlin (2011)

analyze the marginal impact on the now-cast precision of disaggregated data and show that

it is minimal, result which is supported by the observation that markets only focus on the

headlines of each report. The same authors also show that the inclusion of disaggregated data

does not deteriorate the performance of the model, supporting the results on the robustness

of the factor model to data selection (see the empirical analysis in Bańbura, Giannone, and

Reichlin (2010) for longer horizons forecasting and the simulation study of Doz, Giannone,

and Reichlin (2011, 2012)). In this paper we have therefore decided to disregard them but the

results just cited carry two important implications for empirical work in this field. First, the

fact that including disaggregated data does not worsen forecasting performance says that, if

for the problem at hand we were interested in commenting them, we could include them in

the model without paying a cost in terms of larger forecast error. Second, including variables
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with little marginal forecasting power does not hurt results and therefore it is not necessary

to select variables using criteria outside the model; the model itself attributes the appropriate

weight to the different predictors.

An alternative approach consists in selecting the variables using statistical criteria as suggested

in Boivin and Ng (2006); Bai and Ng (2008). We do not consider it for a number of reasons.

First, the algorithms for selecting predictors have been developed for balanced panels and hence

they are not suitable in the context of now-casting since they are designed to account only for

the quality of the signal but not for timeliness. Second, empirically it has been found that,

if data are col-linear, there is no major difference in the forecasting performance of models

based on selected or all available predictors (see De Mol, Giannone, and Reichlin, 2008).14

Finally and most importantly, because of co-linearity among predictors, variable selection is

inherently unstable, i.e. the set of predictors selected is very sensitive to minor perturbation

of the data-set, such as adding new variables or extending the sample length (see De Mol,

Giannone, and Reichlin, 2008). Similar instabilities have also been found in the context of

model selection and model averaging (Ouysse, 2011; Stock and Watson, 2012).

The out-of-sample now-cast evaluations are performed on the basis of real-time data vintages

for the series described in Table 1. This implies that at each date in which we produce a

forecast we use the data that were available just before or on the same day. The real-time

database has been downloaded from ALFRED, the US real-time database maintained by the

Federal Reserve Bank of St. Louis.

Notice that most of the now-casting studies we reviewed earlier involve out-of-sample forecast

evaluations in pseudo rather than in fully real time like here. Pseudo real-time forecast eval-

uation design mimics the real-time situation in the sense that the data publication delays are

replicated following a realistic stylised publication calendar and that the model is estimated

recursively. However, given the difficulties of obtaining real-time data vintages for many series,

final revised data are used throughout the exercise. Hence the effects of data revisions, which

for some variables can be sizable, are disregarded. As noted by e.g. Croushore (2011) this could

affect the results of forecast evaluation and comparison. The few studies with real-time data

include e.g. Camacho and Perez-Quiros (2010); Lahiri and Monokroussos (2011); Liebermann

(2012a); Siliverstovs (2012).

14This result also emerges from a careful reading of the empirical results of Boivin and Ng (2006)

22



3.2 Now-casting GDP

In this section we study the model performance for real GDP now-casting from different per-

spectives. In particular, we analyze the evolution of the now-cast and its uncertainty in relation

to releases of different categories of data. We focus on GDP since it is the variable that best

summarizes the state of the economy.

The benchmark factor model described in Section 2.2.2 including the variables listed in Table 1

is estimated following Bańbura and Modugno (2010) and is specified with one factor only. Our

choice is mainly motivated by simplicity and by the fact that results based on two factors are

qualitatively similar to those based on one factor.15 In order to shed light on the importance of

high frequency data for the accuracy of the now-cast, we also construct two alternative models.

The first is a factor model analogous to the benchmark model, but at monthly frequency and

based on the information set that excludes the weekly and daily variables. The second is

a small monthly factor model based on five (hard) indicators, namely real GDP, industrial

production, real disposable income, retail sales and employment. This is the data-set used in

Stock and Watson (1989) for estimating a coincident indicator for the US economy and it is

also considered by the the NBER’s Business Cycle Dating Committee.

We also compare the performance of the benchmark model to that of bridge equations. For

the latter we estimate a separate regression of GDP on each of the 23 predictors. In each case

we aggregate the monthly predictors to quarterly frequency as explained in Section 2.1.16 As

mentioned in Section 2, we use an auxiliary model to produce the forecast for the predictors

over the “missing” months in the quarter of interest. To this end we estimate an autoregressive

(AR) models on the series and use the BIC criteria to select the number of lags.

We finally report results for the survey of professional forecasters (SPF) which are available in

the middle second month of each quarter.

Depending on when in the quarter we perform the now-cast update, the availability of infor-

mation differs. For example, in the first month we only have very limited information on the

15A more systematic approach to the choice of the number of factors is to set the parameterizations in
a data driven fashion. This can be done in different ways: a) minimizing recursive mean square forecast
error; b) averaging across all possible parameterizations; c) and applying recursively information criteria. The
literature typically indicates that results are robust across model parameterizations (see, for example Angelini,
Camba-Méndez, Giannone, Reichlin, and Rünstler, 2011) although some papers have advocated pooling across
specifications (see Kuzin, Marcellino, and Schumacher, 2009). Bańbura and Modugno (2010) note that the recent
recession period saw larger differences between specifications in terms of forecast accuracy and also advocate
pooling.

16All the bridge equation models in this exercise are based on monthly variables. Accordingly, daily and
weekly data are first averaged over month and the auxiliary models are run at monthly frequency. Partial
monthly information is thus disregarded.
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current quarter, in particular no hard data. To assess how the accuracy of the now-cast im-

proves as information on the current quarter accumulates, we evaluate the now-cast at different

points within a quarter. Precisely, we produce the now-cast four times per month, on the 7th,

14th, 21st and 28th, starting in the first month of the current quarter up to the first month

of the following quarter.17 Each time, the model is re-estimated in order to take into account

parameter uncertainty.

The evaluation sample is 1995-2010. For most of the series the data vintages are available

since January 1995, first date of our evaluation. For the data for which real-time vintages

starting from January 1995 are not available, we use the oldest vintage available and we apply

a “stylized” publication delay, as provided in Table 1.18 The estimation is recursive, i.e. the

first observation in the sample is fixed to the first business day of January 1983. Note that

Bloomberg Consumer Comfort Index dates back only to 1985, however the EM algorithm used

here can deal with series of different lengths.19

Figure 1 reports the Root Mean Squared Forecast Error (RMSFE) from the real-time now-

casting exercise for the three specifications of the factor models, for the bridge equations and

the SPF. The RMSFE is computed with respect to GDP in the final data vintage.20 The

factor model containing the complete data-set is labeled as “Benchmark”, that including only

GDP and monthly variables as “Monthly” and the small one with only hard data as “BCDC”.

For the bridge equations we report the RMSFE of the average forecast from the 23 equations

(in Table 3 in the appendix we report the RMSFE for each single bridge equation model).

The dots indicate the RMSFE of the SPF. On the horizontal axis we indicate the day and the

month of the respective now-cast update.

Overall, the results confirm qualitatively the findings of earlier pseudo real-time exercises.

For example, as found in earlier work, Figure 1 shows that, as the information accumulates, the

gains in forecast accuracy based on the factor model are substantial. In the next subsection, we

show this point formally via a statistical test. Clearly, the ability of the model to incorporate

increasingly richer information as time progresses is key for improving now-cast accuracy.

17As US GDP is typically released around the end of the first month of the following quarter.
18For example, retail sales vintages are available from June 2001 only. For the period January 1995 to May

2001 we use the data figures as available in June 2001 vintage, but every time we produce a forecast we assume
the publication lag of 14 days (cf. Table 1), i.e. on the 14th of each month we add the observation relating to
the previous month.

19This can be an important feature as for many interesting new data sources (e.g. Google trends) only
limited back-data is available. In addition, for many economies, even among headline indicators many have
been collected only since recently.

20“Final” vintage corresponds to the data available in June 2011.
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The SPF, published the second month of the quarter, has comparable performance to our model

at that date. This confirms the results that model-based now-casts fair well in comparison to

institutional or private sector forecasts (Giannone, Reichlin, and Small, 2008; de Winter, 2011)

with real-time data.

The performance of the bridge equations is inferior, indicating sizable gains from adopting a

joint multivariate modelling strategy. This result has been found in e.g. Angelini, Camba-

Méndez, Giannone, Reichlin, and Rünstler (2011), Angelini, Bańbura, and Rünstler (2010) or

Rünstler, Barhoumi, Benk, Cristadoro, Reijer, Jakaitiene, Jelonek, Rua, Ruth, and Nieuwen-

huyze (2009).

Two other results emerge from the analysis. First, surveys appear to have an important role

in improving the accuracy of the model at all points of time as the now-casts from the model

based on only hard data are less accurate (on this point see also Giannone, Reichlin, and Small,

2008; Bańbura and Modugno, 2010; Lahiri and Monokroussos, 2011). Second, the inclusion of

higher frequency data does not improve the results significantly.

Now-casting after the fall of Lehman Brothers

To further analyze the result that inclusion of daily and weekly variables does not improve

now-cast accuracy, and as an illustration of how the sequence of news impacts the estimate of

GDP and the associated uncertainty, we replicate a real-time now-cast from the benchmark

specification of the GDP growth rate for the fourth quarter of 2008. Precisely, from October

1st 2008 until the end of January 2009, when the first official estimate of GDP was released,

we produce daily updates of the now-cast, each time incorporating new data releases. This is a

particularly interesting episode since it corresponds to the onset of the financial crisis following

the bankruptcy of Lehman Brothers.

As explained in Section 2.3, the revisions of the GDP now-cast can be expressed as weighted

sums of news from particular releases.21 Similarly, the Kalman smoother output allows to

decompose the gradual decline in filter uncertainty into contributions from particular (groups

of) variables. For the purpose of the exercise we group the variables into the daily, weekly,

monthly and quarterly. As the decomposition is conditional on a given set of parameters, we

produce all the updates using the parameters estimated over the sample 1983-2010.

21Recall that the decomposition does not take into account the effect of the revisions to back-data. Ac-
cordingly, the difference between two consecutive now-casts (based on vintages Ωv+1 and Ωv) in the exercise
is equal to the sum of the effect of the news and of the effect of data revisions. The latter is defined as the
difference between the now-cast based on the data availability pattern of vintage Ωv but with revised back-data
as available in vintage Ωv+1 and the now-cast based on vintage Ωv.

25



Figure 1: Root Mean Squared Forecast Error (RMSFE), GDP
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Notes: Figure shows the Root Mean Squared Forecast Error (RMSFE) over period 1995-2010 for the model containing
the complete data-set (Benchmark), the one that includes GDP and monthly variables only (Monthly), the one that
uses the five hard variables considered by the NBER’s Business Cycle Dating Committee (BCDC) and the average of
the RMSFEs produced by the bridge equations (Bridge) over the sample period 1995 - 2010. The forecast accuracy
of the model is evaluated four times per month for four consecutive months (from the first month of the current
quarter, Q0 M1 to the first month of the following quarter, Q+1 M1). The date of the update is indicated on the
horizontal axis. The dot corresponds to the RMSFE for the survey professional forecasters (SPF).

Let us start with the filter uncertainty, see Figure 2. The chart indicates that macroeco-

nomic monthly releases have the largest effects: the big spikes correspond to the release of

the (monthly) employment situation report. Smaller spikes are experienced when industrial

production is released. In contrast, daily and weekly data do not seem to have much of an

impact. To understand whether this result is explained by the fact that the effect of daily

data is spread over time, we have computed the cumulative effect of daily and weekly data on

the uncertainty from the first day of the current quarter to the day of GDP release. For that

period total uncertainty is reduced from 0.066 to 0.015 (the day of the GDP release it collapse

to zero) and 92% of it is due to the macro variables while the daily variables account only for
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Figure 2: Filter uncertainty, GDP
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Notes: Figure reports the evolution of filter uncertainty (RHS scale) and the contributions to its decline (LHS scale)
for the GDP now-cast for fourth quarter of 2008. The data are grouped according to frequencies: daily (’D’), weekly
(’W’), monthly (’M’) and quarterly (’Q’). The horizontal axis indicates the date of the now-cast update.

the remaining 8%. This confirms the finding of a negligible role of high frequency variables,

notably daily financial data. Finally, the impact of GDP release for the previous quarter is

very small. This is explained by timeliness: once “early” information on the current quarter

is released and incorporated in the model, information on the previous quarter GDP becomes

redundant for the now-cast of the current quarter.

Figure 3 reports the evolution of the now-cast itself and the contribution of the news component

of the various data groups to the now-cast revision.
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Figure 3: Contribution of news to now-cast revisions
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vintage). The horizontal axis indicates the date of the now-cast update.
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Industrial production for September (published mid October) has the largest impact and leads

to a substantial downward revision. This negative news in October is confirmed by subsequent

data, both surveys and hard data. In fact, with all subsequent releases the tendency is for

negative revisions.

News from daily financial variables are far from being small but they are volatile and lead to

revisions in different directions. This explains the result of Figures 1 and 2. As will become

clearer in the next section, it is the low frequency component of financial variables which is

related to real economic activity while daily fluctuations might carry wrong signals.

Our results on the role of financial variables are in line with what has been found by Stock

and Watson (2003) and Forni, Hallin, Lippi, and Reichlin (2003), who analyze the forecasting

ability of financial variables for economic activity for longer horizon than ours and in models

where they are aggregated at the monthly frequency and their timeliness is not exploited.

A different conclusion is reached by Andreou, Ghysels, and Kourtellos (2008) who find that

financial variables have a sizeable impact on the now-cast accuracy of GDP.

With such different results obtained on the basis of different modeling approaches, more work

is needed to reach a conclusion on this point. A difference between the application here and

Andreou, Ghysels, and Kourtellos (2008) is that the latter authors use a larger set of daily

financial variables than the five we use.22 However, results are hardly comparable since An-

dreou, Ghysels, and Kourtellos (2008) treat monthly data such as surveys and the employment

report, which we find very informative, as quarterly, thus disregarding their advantage in terms

of timeliness.

Let us also observe that news from the weekly variables, unlike the daily financial news, are

very small. Our conjecture for this finding is that initial jobless claims are rather noisy. This

is line with the view of the NBER’s Business Cycle Dating Committee, which does not use

this series to determined the business cycle chronology (http://www.nber.org/cycles).

22To reduce the dimensionality of the large panel they consider, they extract a small set of principal compo-
nents and/or apply forecast combination methods.
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3.2.1 Does information help improving forecasting accuracy? Monotonicity tests

Figures 1, 2 and 3 have shown heuristically that both out-of-sample and in-sample uncertainty

decrease as more information becomes available. A natural way to formally test the decline

in uncertainty as more data arrive is to apply the tests for forecast rationality proposed by

Patton and Timmermann (2011) and based on the multivariate inequality tests in regression

models of Wolak (1987, 1989). We rely on the first three tests of Patton and Timmermann

(2011), and we report the p-values for the “Benchmark” model, the models “Monthly” and

“BCDC” as well as the average p-value of the bridge equations.23

Test 1: monotonicity of the forecast errors

Let us define ỹt = yk1t,1 and et|Ωv
= ỹt − E

[
ỹt|Ωv

]
as the forecast error obtained on the basis of

the information set corresponding to the data vintage Ωv and by et|Ωv+1
that obtained on the

basis of a larger more recent vintage v + 1 and v = 1, · · · , V .

The Mean Squared Errors (MSE) differential is ∆e
v = E

[
e2t|Ωv

]
− E

[
e2t|Ωv+1

]
.

The test is defined as follows:

H0 : ∆
e ≥ 0 vs H1 : ∆

e � 0 ,

where the (V − 1)× 1 vector of MSE-differentials is given by ∆e ≡ (∆e
1, ...,∆

e
V−1)

′.

Test 2: monotonicity of the mean squared forecast

Define the mean squared forecast (MSF) for a given vintage as E
[
ỹ2t|Ωv

]
= E

[
E
[
ỹ2t |Ωv

]]
and

consider the difference ∆f
v = E

[
ỹ2t|Ωv

]
− E

[
ỹ2t|Ωv+1

]
and its associated vector ∆f .

The test is:

H0 : ∆
f ≤ 0 vs H1 : ∆

f � 0 .

The idea behind this test is that the variance of each observation can be decomposed as follows:

V
(
ỹt

)
= V

(
ỹt|Ωv

)
+ E

[
e2t|Ωv

]
,

given that E
[
ỹt|Ωv

]
= E

[
ỹt

]
. Then a weakly decreasing pattern in MSE directly implies a

weakly increasing pattern in the variance of the forecasts, i.e. ∆f ≤ 0.

23We thank Allan Timmermann for suggesting these tests in our context.
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Test 3: monotonicity of covariance between the forecast and the target variable

Here we consider the covariance between the forecast and the target variable for different

vintages v and the difference: ∆c
v = E

[
ỹt|Ωv

ỹt

]
−E
[
ỹt|Ωv+1

ỹt

]
. The associated vector is defined

as ∆c and the test is:

H0 : ∆
c ≤ 0 vs H1 : ∆

c � 0 .

This test is closely related to the previous one. Indeed the covariance between the target

variable and the forecast can be written as:

Cov
[
ỹt|Ωv

, ỹt

]
= Cov

[
ỹt|Ωv

, ỹt|Ωv
+ et|Ωv

]
= V

(
ỹt|Ωv

)
Consequently, a weakly increasing pattern in the variance of the forecasts implies a weakly

increasing pattern in the covariances between the forecast and the target variable.

Results for the three tests are reported in Table 2. Monotonicity cannot be rejected by any of

the three tests confirming the visual evidence of Figures 1 and 2.

Table 2: Monotonicity tests
∆e ≥ 0 ∆f ≤ 0 ∆c ≤ 0

Benchmark 0.50 0.49 0.50
Monthly 0.50 0.50 0.50
BCDC 0.50 0.50 0.50
Bridge 0.50 0.50 0.50

Notes: Table reports the p-values of three of monotonicity tests for, re-
spectively, the forecast errors, the mean squared forecast and covariance
between the forecast and the target variable. For the bridge equations the
table reports the average p-value.

3.3 A daily index of the state of the economy

To understand the working of the model, it is interesting to plot the estimated daily factor.

Common factors extracted from a set of macroeconomic variables have become a popular tool

to monitor business cycles conditions (see e.g. Aruoba, Diebold, and Scotti, 2009).24 Our daily

factor should be interpreted as a daily index of the underlying state of the economy, or rather

24The Federal Reserve Bank of Philadelphia regularly publishes a daily index obtained by applying this
framework to extract a daily common factor from the following indicators: weekly initial jobless claims;
monthly payroll employment, industrial production, personal income less transfer payments, manufacturing
and trade sales; and quarterly real GDP, see http://www.philadelphiafed.org/research-and-data/real-time-
center/business-conditions-index/
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its day-to-day change, which is to be distinguished from daily or intra-daily update of the

estimate of quarterly GDP growth for the current quarter (the now-cast).

Figure 4a plots this daily index (re-scaled to facilitate the comparison) against GDP growth

and shows that it tracks GDP quite well. The index is based on the latest data vintage and,

as in the case of the filter uncertainty and news, on the parameters estimated over the sample

1983-2010.

By appropriate filtering, this index can be aggregated to reflect quarterly growth rate25 and

we can then consider the projection of GDP on this quarterly aggregate (Figure 4b). This is

the common component of GDP growth and captures that part of GDP dynamics which co-

moves with the series included in the model (monthly, weekly and daily) while disregarding its

idiosyncratic movements. The projection captures a large share of GDP dynamics suggesting

that the common component, although it disregards the idiosyncratic residual, captures the

bulk of GDP fluctuations.

25As the filter weights we use ω
kq,f
i , i = 0, 1, . . . , 2kq − 2, as explained in Section 2.
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Figure 4: Daily factor, GDP and its common component
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(b) Common component of GDP
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Notes: The upper panel shows daily factor against quarterly GDP growth. The lower panel shows the GDP growth
against its projection on the quarterly aggregation of the daily factor, i.e. against its common component.
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3.4 Stock prices

In this section we report some statistics on the degree of commonality of stock prices with

macroeconomic variables.

First, we compute the common component of the S&P 500 index filtered to match daily,

monthly, quarterly and yearly growth rates at the end of the respective periods (Figure 5).26

This is the signal of stock prices, extracting that part of their dynamics which is correlated

with the macroeconomy. Figure 5 shows that the commonality is not trivial when we consider

longer term fluctuations, annual in particular, although the degree of commonality of the S&P

500 with the rest of the panel is less pronounced than what is estimated for GDP (Figure 4b).

Clearly, although stock prices provide some false signals, they do go down in recessions.

Second, we compute the ratio of the spectral density of the common component and that of

the series itself (at daily frequency).27 Figure 6 shows that the bulk of commonality between

the S&P 500 index and macroeconomic variables is at very low frequencies, i.e. the ratio of the

variance of the common component relative to total is high at low frequencies. For a typical

business cycle periodicity of eight years (corresponding to the frequency f = 2π/(8 ∗ 244) =

0.003) we have a quite sizable ‘commonality’, with the ratio of around 30%. This shows that low

frequency components of stock prices are indeed related to macroeconomic fluctuations. Notice,

however, that already for cycles with periodicity lower than yearly (f > 2π/244 = 0.026), the

ratio is below 2%.

Our model can be developed further to express the common component of stock prices in terms

of news and model based weights of those news. We leave this for further work.

4 Conclusions and discussion on further developments

In this chapter we have reviewed different approaches to now-casting, including traditional

tools used in policy institutions (bridge equations).

A key point of our discussion is that the traditional approach is limited since it does not

provide a framework for the reading of the flow of data as they become available throughout

the quarter and for the evaluation of their impact on the updates of the now-cast.

26What we mean here by the monthly (quarterly and yearly) growth rate is the growth rate between the
average last 22 (66 or 244) daily “level” observations and the average preceding 22 (66 or 244) observations. To
obtain these growth rates we filter the daily growth rates using the weights ωk,f

i , k = km (k = kq or k = ka).
Note that the resulting series is still at daily frequency.

27The spectral density is derived from the estimated parameters of the model.
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Figure 5: S&P 500 and its common component at different levels of time aggregation
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Notes: Figure compares the S&P 500 and its common component at daily frequency filtered to match daily, monthly,
quarterly and yearly growth rates at the end of the respective periods.

We have distinguished between an approach which is based on the specification of a joint model

for the target variable and for the predictors - which can therefore be used to derive model

based news associated to different data releases and to assess their impact on the now-cast -

and what we call “partial” models based on single equations.
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Figure 6: Spectral density ratio: S&P 500 vs its common component
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Notes: Figure shows the ratio of spectral density of the common component of the S&P 500 of the series itself. f
on the horizontal axis refers to the frequency.

In the discussion and application we have stressed that the essential ideas of now-casting

have been developed in two papers, Evans (2005) and Giannone, Reichlin, and Small (2008),

which propose a model in which the state space representation is exploited in order to produce

sequences of now-casts in relation to the real-time data flow. We have then discussed advances

and refinements of this approach as well as different solutions to technical aspects of the real-

time analysis: mixed frequency, “jagged”/“ragged” edges, high-dimensionality. On the latter

aspect we have referred to theoretical work on factor models for high-dimensional data and, in

particular to Doz, Giannone, and Reichlin (2011) and Doz, Giannone, and Reichlin (2012). The

latter paper provides the theoretical justification for using maximum likelihood estimation for

a “large” factor model which is the approach followed in the empirical application and which

we consider the state of the art in this field.

The empirical analysis we have presented, based on a daily model and a real-time evaluation,

confirms early results on the role of surveys (see Bańbura, Giannone, and Reichlin, 2011, for a

recent review) and indicates that daily financial variables do not help improving the precision
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of the GDP now-cast. A formal test on the role of expanding information for improving the

accuracy of the GDP now-cast shows that, as more data become available during the quarter,

the precision indeed increases thereby confirming previous heuristic evidence on this point.

As a by-product of our methodology we have constructed a daily index of economic activity and

considered the projection of both GDP and the S&P 500 index of stock prices on this index.

Results show that the projection explains the bulk of GDP dynamics while it explains much

less of daily fluctuations of stock prices. On the other hand, the index explains low frequency

movements of stock prices indicating that financial variables are linked to macroeconomic

fundamentals.

We have limited the empirical application to GDP and stock prices although the methodology

can be applied to the now-casting of any of the variables included in the model. Liebermann

(2012a), for example, provides a detailed study on the now-casting of a large variety of key

monthly macroeconomic releases. The same framework has also been used for now-casting

inflation (Modugno, 2011) and for now-casting the components of GDP (Angelini, Bańbura,

and Rünstler, 2010).

Our review has focused on what we regard as essential contributions to the now-casting liter-

ature and has omitted some important papers. For example, we have focused only on point

now-cast. Now-cast densities in a state space framework could be obtained both via a fre-

quentist (Aastveit, Gerdrup, Jore, and Thorsrud, 2011) or Bayesian (Marcellino, Porqueddu,

and Venditti, 2012) approach. Further, Aastveit, Gerdrup, Jore, and Thorsrud (2011) consider

now-cast combination where different classes of models, including VARs, factor models, bridge

equations are combined in the context of now-casting. This approach is interesting but it is

not obvious how to use it to extract the news and relate them to the sequence of now-cast

updates, the feature that we have stressed here as being a key element of now-casting. Also, we

have omitted a discussion of the so-called bottom-up approach that imposes national account

identities for obtaining coherent now-cast for GDP ad its main components. Empirically, in

terms of forecasting accuracy there are no major advantages of this approach with respect

to our direct approach. However, the forecasts of components of GDP might be useful for

economic interpretation and “story telling”. We refer the reader to Angelini, Bańbura, and

Rünstler (2010) for the adaptation of our model in this context.

Let us also stress that we have focused on now-casting rather than on the construction of syn-

thetic indicators of real economic activity, the so-called diffusion indexes. Those indexes were

introduced by Stock and Watson (1989) in small-scale models with only monthly indicators
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and estimated by maximum likelihood. In large-scale models they have been developed by Al-

tissimo, Bassanetti, Cristadoro, Forni, Hallin, Lippi, Reichlin, and Veronese (2001), Altissimo,

Cristadoro, Forni, Lippi, and Veronese (2010) and Chicago Fed (2001) using principal compo-

nent analysis. Mariano and Murasawa (2003) extended the framework of Stock and Watson

(1989) to include quarterly GDP as well as monthly variables and recently Aruoba, Diebold,

and Scotti (2009) have also included weekly initial jobless claims using the same framework.

Although models to construct early estimates of GDP using selected monthly data have been

around for a long time in policy institutions, now-casting as we have defined it here is a recent

field for academic research and it is therefore likely to see new developments in many aspects.

Beside research on modeling high frequency data, such as financial, which we have mentioned

in the text, research on the potential value of other sources of information like google search

volumes (see for example Vosen and Schmidt, 2011) is also interesting and we are sure will be

the object of future investigation.

Another idea for further research is to link the high frequency now-casting framework with a

quarterly structural model in a model coherent way. Giannone, Monti, and Reichlin (2009)

have suggested a solution and other developments are in progress. A by-product of this analysis

is that one can obtain real-time estimates of variables such as the output gap or the natural

rate of interest which can only be defined theoretically on the basis of a structural model.

As a final remark, let us stress that the now-casting models we have considered here are all linear

and with constant parameters. Our choice is motivated by the fact that the empirical knowledge

at present is mostly limited to this class of models. However, the events of the last few years

have challenged the predictive power of all models, including now-casting. Extensions of our

framework, incorporating e.g. time-varying features, might address some of these challenges

and we consider this a promising area for future research.
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Appendix: details on the state space representation and estima-
tion

Aggregator variables

We explain how the aggregator variables can be recursively obtained so that

F k,·
t =

2k−2∑
i=0

ωk,·
i Ft−i , t = k, 2k, . . . , k = kq, km, kw .

As for the flow variables, the summation in F k,f
t goes over the current and previous observation

interval, we also need auxiliary variables, F̄ k,f
t . F k,f

t can be obtained recursively as follows:

F̃ k,f
t =

(
F k,f
t

F̄ k,f
t

)
=



(
F̄ k,f
t−1 + ωk,f

k−1Ft

0

)
, t = 1, k + 1, 2k + 1, . . . ,(

F k,f
t−1 + ωk,f

R(k−t,k)Ft

F̄ k,f
t−1 + ωk,f

R(k−t,k)+kFt

)
, otherwise ,

where R(·, k) denotes the positive remainder of the division by k (e.g. R(−1, k) = k − 1). For

the stock variables only single aggregator variable is necessary and we have:

F k,s
t =

{
ωk,s
k−1Ft , t = 1, k + 1, 2k + 1, . . . ,

F k,s
t−1 + ωk,s

R(k−t,k)Ft , otherwise .

This can be implemented via the transition equation (7) with the following Wk,·
t and Ik,·

t :

Wk,f
t =



(
−ωk,f

k−1

0

)
, t = 1, k + 1, . . . ,(

−ωk,f
R(k−t,k)

−ωk,f
R(k−t,k)+k

)
, otherwise ,

Ik,f
t =


(

0 Ir

0 0

)
, t = 1, k + 1, . . . ,

I2r , otherwise ,

Wk,s
t = −ωk,s

R(k−t,k) , Ik,s
t =

{
0 , t = 1, k + 1, . . . ,

Ir , otherwise .

Different number of days per period

To deal with different number of days per month or quarter, for the flow variables we make an

approximation that

zkt =
k

kt

kt−1∑
i=0

zt−i , t = k1, k1 + kk1+1, . . . ,

where kt is the number of business days in the period (month or quarter) that contains day t

and k is the average number of business days per period over the sample. This can be justified
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by the fact that data are typically working day adjusted. Consequently, ykt = zkt − zkt−kt

becomes28

ykt = k

kt−1∑
i=0

i+ 1

kt
yt−i +

kt+kt−kt
−2∑

i=kt

kt + kt−kt − i− 1

kt−kt

yt−i

 , t = k1, k1 + kk1+1, . . . .

Hence we will have time-varying aggregation weights for the flow variables ωk,f
t,i = k i+1

kt
for

i = 0, 1, . . . , kt − 1, ωk,f
t,i = k

kt+kt−kt
−i−1

kt−kt
for i = kt, kt + 1, . . . , kt + kt−kt − 2 and ωk,f

t,i = 0

otherwise. Formulas described above should be modified to reflect this.

Estimation by the EM algorithm

We first explain the EM algorithm steps for a simpler state space representation, as given by

(3)-(4), and then discuss how to modify the procedure for the more complicate representation

(6)-(7).

For the state space representation (3)-(4) we would have θ = (µ,Λ,Φ,ΣE ,ΣU ), where the only

restriction is that ΣE is diagonal. Let Tv = maxn Tv(n) denote the time index of the most

recent observation in Ωv. The log-likelihood can be written in terms of Y = (Y1, Y2, . . . , YTv)

and F = (F1, F2, . . . , FTv) as l(Y, F ; θ). With some initial estimates of the parameters θ(0) the

EM algorithm would proceed as follows:

E− step : L(θ, θ(j)) = Eθ(j)

[
l(Y, F ; θ)|Ωv

]
,

M− step : θ(j + 1) = argmax
θ

L(θ, θ(j)) .

The new parameter estimates in the M-step can be obtained in two steps, first Λ(j + 1) and

Φ(j + 1) are given by:

Λ(j + 1) =

(
Tv∑
t=1

Eθ(j)

[
YtF

′
t |Ωv

])( Tv∑
t=1

Eθ(j)

[
FtF

′
t |Ωv

])−1

, (11)

Φ(j + 1) =

(
Tv∑
t=1

Eθ(j)

[
FtF

′
t−1|Ωv

])( Tv∑
t=1

Eθ(j)

[
Ft−1F

′
t−1|Ωv

])−1

. (12)

Second, given the new estimates of Λ and Φ, the covariance matrices can be obtained as follows:

ΣE(j + 1) = diag

(
1

Tv

Tv∑
t=1

Eθ(j)

[(
Yt − Λ(j + 1)Ft

)(
Yt − Λ(j + 1)Ft

)′|Ωv

])
(13)

= diag

(
1

Tv

(
Tv∑
t=1

Eθ(j)

[
YtY

′
t |Ωv

]
− Λ(j + 1)

Tv∑
t=1

Eθ(j)

[
FtY

′
t |Ωv

]))
28If t is the last day of a period with kt days then kt−kt refers to the number of days in the preceding period.
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and

ΣU (j + 1) =
1

T

(
Tv∑
t=1

Eθ(j)

[
FtF

′
t |Ωv

]
− Φ(j + 1)

Tv∑
t=1

Eθ(j)

[
Ft−1F

′
t |Ωv

])
, (14)

see Watson and Engle (1983) and Shumway and Stoffer (1982). If Yt did not contain missing

observations (Ωv = Y ), we would have that

Eθ(j)

[
YtY

′
t |Ωv

]
= YtY

′
t and Eθ(j)

[
YtF

′
t |Ωv

]
= YtEθ(j)

[
F ′
t |Ωv

]
,

which can be plugged to the formulas above. The expectations Eθ(j)

[
FtF

′
t |Ωv

]
, Eθ(j)

[
FtF

′
t−1|Ωv

]
and Eθ(j)

[
Ft|Ωv

]
can be obtained via the Kalman filter and smoother. When Yt contains miss-

ing observations (11) and (13) become

vec
(
Λ(j + 1)

)
=

(
Tv∑
t=1

Eθ(j)

[
FtF

′
t |Ωv

]
⊗ St

)−1

vec

(
Tv∑
t=1

StYtEθ(j)

[
F ′
t |Ωv

])
(15)

and

ΣE(j + 1) = diag

(
1

Tv

Tv∑
t=1

(
StYtY

′
t S ′

t − StYtEθ(j)

[
F ′
t |Ωv

]
Λ(j + 1)′St − StΛ(j + 1)Eθ(j)

[
Ft|Ωv

]
Y ′
t St

+ StΛ(j + 1)Eθ(j)

[
FtF

′
t |Ωv

]
Λ(j + 1)′St + (IN − St)ΣE(j)(IN − St)

))
. (16)

where St is a selection matrix, i.e. it is a diagonal matrix with ones corresponding to the

non-missing observations in Yt and zeros otherwise, see Bańbura and Modugno (2010).

For the daily model given by (6)-(7) the parameters are estimated using a modified version

of the procedure just described. The necessary conditional expectations are provided by the

Kalman filter and smoother applied to (6)-(7). Λ·,· are estimated blockwise, by frequency and

by stock or flow type, using a formula similar to (15) in which Yt and Ft are replaced by

the appropriate block of Y KY
t and the corresponding aggregator variable, respectively. The

estimate of the covariance matrix of EKY
t follows from (16) with Ft and Λ replaced by the entire

state vector and the entire matrix of coefficients in the measurement equation (6) respectively.

Finally the estimates for Φ and ΣU follow from (12) and (14) respectively, by taking the

elements from the conditional covariances of the state vector corresponding to Ft.

Computation of the news

To compute the news we need the conditional covariances of Xt and Xt−i:

E
[
(Xt − E [Xt|Ωv]) (Xt−i − E [Xt−i|Ωv])

′
]
.

One way to obtain them is to extend the state vector by its i lags. However, if i is large this

could lead to a prohibitively large state vector. Instead we use the direct formulas for the

covariances by De Jong and Mackinnon (1988).
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