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Abstract

Let (rt)t be a general GARCH(1, 1)-type process. We give explicit
integral formula's for the probability densities of rt+k conditional to
given values of rt; �t, where the latter denotes the variance. As an
application, we study the extreme value asymptotics of rt+k and of
rt+1 + � � � + rt+k. These are relevant for the estimation of Value at
Risk and other measures of �nancial risk in the context of GARCH-
models.

Keywords: generalized autoregressive heteroskedastic process, conditional proba-
bility density functions, extreme value asymptotics, asymptotics of Laplace inte-
grals, Value at Risk.

1 Introduction

The Value at Risk- or VaR associated with a position taken in the �nancial market
is de�ned as the maximum expected loss within a chosen con�dence and over a
chosen time-frame. It's speci�cation therefore requires the following input:

� a time window [t; t+ k]:

� a con�dence level c, typically close to 1:
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� a model for the behavior of (the �nancial assets making up) one's position
over the chosen time frame.

With these data, VaR is simply the (1� c)-th lower quantile of the probability
distribution of the Pro�t & Loss (P & L )-function over the period [t; t + k]; cf.
RiskMetrics [20] and also Jorion [16] or Dowd [9]. Time-frame and con�dence level
are simple parameters, which are the user's discretion : choices for c of 95% or 99%
and of time frames with k equal to 1 to 10 days are current, the last mentioned
choices corresponding to the Basle Committee's recommendations. We note here
that time will be discrete in this paper, measured in days or in multiples of some
other basic unit.

The choice of model is of course crucial. Here, "model" is to be understood in
a wide sense: ranging from straightforward Historical Simulation to (more or less
sophisticated) parametric models. The disadvantages of HS are well-known: un-
reliable small quantile estimation due to lack of su�cient data for extreme events,
the assumption that the future is almost exactly as the past and too much weight
given to distant (in time) events 4. Parametric models of course come with their
own dangers, the most obvious one of which is trying to make the data �t a into
straightjacket unsuitable for them. For example, a lot of VaR methodologies are
still based on (conditionally) normally distributed returns, although the deviation
of stock return data from the normal distribution, in particular as concerns the
outliers, is by now well known and well documented: cf. Embrechts, Mikosch and
Kl�uppelberg [10], Frey and McNeil [13], Mikosch and Stari�ca [19] and also Dowd
[9] and it's references. Still, parametric models present the advantage of providing
easily evaluated and more reliable extreme quantile-estimates, if the model's �t is
right.

It is clear that VaR-estimates can vary hugely from one model to another, and
that model risk is an important issue here. It is therefore important to thoroughly
understand the quantitative and general mathematical implications of working
with a certain stochastic model. Related to this, one of the issues with which we
will be concerned in this paper is another kind of model risk, di�erent from the one
mentioned just now, which consists of naively applying rules of thumb valid for one

4The HS-method makes the hidden assumption that the P& L-process is stationary
(which is of course one way of formalising that the "future is like the past") and non-
parametrically estimates the unconditional probability distribution of the P&L process.
Even if this process were in general stationary over periods of a year or so, which we frankly
doubt, conditional and unconditional probability distributions may di�er hugely, and it is
the conditional distributions which are important for day to day risk management, as has
been stressed by Frey and McNeil [13]
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model to another, completely di�erent one, without any (a priori or a posteriori)
justi�cation. This would seem to be too obvious a point to make, but is exactly
the kind of thing which can be observed in some of the VaR methodologies, and in
particular in the RiskMetrics one; cf. [20]. The RiskMetrics model is a particular
example of the GARCH(1, 1)-models which are the main subject of this paper. It
takes the form:

rt+1 = �t+1"t+1 (1)

�2t+1 = ��2t + (1� �)r2t ;

where rt = log(Pt=pt�1) is the logarithmic one-period return, Pt being the (mone-
tary) value of one's position at time t, � is a parameter to be estimated and where
the "n are iid N(0; 1)-distributed. In this model, the VaR over the period [t; t+1]
is easily computed to be

V aRc(1) = �t+1q
N
1�cPt;

where qN� denotes the lower �-th quantile of the standard normal distribution5.
Note that it is the conditional VaR we are talking about. One next is interested in
the k-period VaR. Following RiskMetrics, one easily computes that for any � � 1
the conditional expectation of r2t+� given rt and �t is simply �2t+1 again, and that
therefore the (conditional) variance of the k-period return is

E
�
r2t+1 + � � �+ r2t+kjrt; �t

�
= k�2t+1;

the expectation being the one conditional to the (known) values of rt and �t at time
t. RiskMetrics then proposes to simply compute the k-period VaR over [t; t + k]
as

V aRc(k) =
p
kV aRc(1): (2)

However, this makes only sense if the k-period return are (close to) normally
distributed6 and, as one of the main results of our paper shows, this is far from
being the case, even for a k as small as 2. Therefore, baring accidental numeri-
cal coincidences for certain c, one should expect the "real" VaR (as given by the
model) to be very di�erent from (2). A phenomenon of this kind has been observed
numerically, through Monte-Carlo simulation, by Frey and McNeil [13] (but for a
GARCH(1, 1)-model with non-normal innovations "t, though). A similar preoc-
cupation with variances can be observed in much of the empirical �nancial and

5we are making the usual approximation e
r
� 1 ' r:

6In fact, (2) is the same as the k-period VaR in a simple random walk model for the
rt's, which should be enough to make one suspicious!
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econometrical litterature. However, primary attention should be given to the dis-
tribution functions themselves and one of the merit's of the VaR (whatever it's
adequacy as a risk management tool, cf. Artzner, Delbaen, Eber, and Heath [1])
is that it concentrates the minds on these7. Comparing variances strictly speak-
ing only makes sense when all relevant probability distributions belong to a one-
parameter family ��1f(x=�) of distributions (one might allow f to vary slightly).
The main point of our paper, for risk analysis purposes, is this is certainly not the
case for multi-period estimates in the context of a GARCH(1, 1)-models. To give
an example, our results imply that for the RiskMetrics model (1) the logarithm of
the probability distribution function of rt+k, given rt = 1 and �t = 1 at time t,
behaves for large negative x as

(2�k)�1=2(1� �)(k�1)=k exp

�
k � 1

2
(

�

1� �
+ log 2)

�
�

� 1

jxj1�1=k
exp

�
k

2
(1� �)�(1�1=k)jxj2=k

�
:

We have similar asymptotic estimates for the k-period returns, with the same type
of x-dependence but di�erent constants. Even for k = 2, this is asymptotically
very di�erent from the standard normal distribution which one obtains for rt+1

with the above values of the parameters. That the distribution function of rt+k
for big k's will be very much di�erent from the normal one may be inferred from
known results on the stationary distribution of a GARCH(1, 1), going back to
Kesten [17]; cf. also Embrechts, Mikosch and Kl�uppelberg [10] and Mikosch and
Starica [19] and their references. What may be unexpected about our results is
that this non-normality shows up that quickly. Also, note that the RiskMetrics
model is not second order stationary.

Autoregressive Conditionally Heteroskedastic or ARCH processes were intro-
duced by Engle [11] and subsequently generalized by Bollerslev [2] to GARCH or
Generalized ARCH processes: these are processes of the form (1), with a �t+1 now
more generally being given by

�t+1 = (a0 +
pX

j=1

ajr
2
t�j +

qX
j=1

bj�
2
t�j)

1=2

and with the ("t)t iid but not necessarily normal; this is called a GARCH(p, q).
An ARCH(p) corresponds to no b's or, equivalently, to q = 0. More general

7For a riskmeasure like the expected shortfall the pre-eminece of the distribution func-
tion is even larger, making it still more model dependend. This might incidentally be
somewhat of a disadvantage.
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processes allowing more general functional dependences of �t on past values rt�j
of the processe and on past variances were introduced by Nelson [18], Gu�egan and
Diebold [6], [7] and many others: we refer to Bollerslev, Engle and Nelson [3] or
Gu�egan [14] for an overview.

GARCH processes are popular in empirical �nance because of their capability
to model a phenomenum like volatility clustering. One very often restricts one-
self, as we will do here, to GARCH(1, 1 ) models, which have a low number of
parameters to be estimated. Theoretical work on GARCH-processes has mainly
concentrated on stationarity issues and on the behavior of secondary statistics like
various moments. In this paper we concentrate on the distribution functions of
the various rt+k, and of the cumulated returns rt+1 � � �+ rt+k, conditional to given
values of rt and �t at time t. We will in particular determine their asymptotic
behavior for large values of the argument x, which will for both be shown to be of
the type

Ckjxj�(1�1=k)e�ckjxj
2=k

with explicit expressions for the constants in the case of rt+k. For the cumulated
returns we actually only show have asymptotic upper and lower bounds of this
form. Note that it is exactly this kind of asymptotics, for �xed k and large jxj,
which will be relevant for risk management practice, if rt models a return. Sta-
tionarity considerations, which are more closely related with the k !1 limit, will
play no rôle in this paper.

The paper is organized as follows: �rst, in section 2, we derive a general
representation formula for the probability density function of rt+k, valid for a
general GARCH(1, 1) with rather arbitrary dependence of �t+1 on rt and �t.
Traditional GARCH(1, 1)'s �a la Bollerslev [2] and EGARCH(1, 1) processes as
introduced by Nelson [18] will provide illustrations. In section 3 we do the same
for the cumulative returns rt+1+ � � �+ rt+k. The remainder of the paper will then
be concerned with the asymptotics of these distribution functions in the case of
a classical GARCH(1, 1) with normal innovations8. In section 4 we �rst derive a
technical result on asymptotics of Laplace transforms which will be needed in the
sequel. In section 5 we will obtain rather precise asymptotics for the distribution
functions of the returns rt+k and, in section 6, a somewhat more qualitative result
on the cumulative returns. We end the paper with an application to multi-period
VaR estimation.

The main results of this paper were announced in the note [4].

8Non-normal innovations will be considered in another paper
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2 Conditional distributions with a time-lag

for GARCH(1, 1) processes

We consider a general GARCH(1; 1) process:

n rt+1 = �t+1"t+1

�t+1 = '(rt; "t)
(3)

For us, rt will typically model a security return taken over a period [t � 1; t]: if
(Pt)t2N is a discrete time series of �nancial asset prices, rt will be the logarithmic
return log(Pt=Pt�1).

The function ' : R2 ! R�0 will be measurable, and will have to be such that (4
below holds. The random shocks ("t)t will be, by hypothesis, iid, with mean 0 and
variance 1. This could be weakened to independence only, with t-dependend dis-
tributions, at the cost of complicating the notations. One can also let ' explicitly
depend on t. The independence of the "t is, however, essential. Since such changes
can easily be incorporated afterwards, we will �rst concentrate on the model (3).

We are interested in the conditional probabilities of rt+k given rt, �t, for any k � 1
(the case of k = 1 being of course trivial). We will suppose that both the "t and
the random variables '(u"t; u) have a probability distribution function, or pdf,
for any �xed u > 0. Again, these hypotheses could be weakened, by replacing
functions by measures at the appropriate places below. Speci�cally, if we use the
notation X � f to mean that a random variable X has pdf f , we will assume that

"t � f

'(u"; u) � hu if " � f; u > 0: (4)

The function hu can easily be computed in practice. We want to compute the
conditional pdf's

pt;k(x; �; s) = Prob (rt+k = xjrt = �; �t = s) : (5)

using a somewhat informal "physicist's" notation. De�ne two integral operators
F and H on L1(R) and L1(0;1), respectively, by

F (u)(x) =

Z 1

0

1

s
f

�
x

s

�
u(s) ds (6)

H(u)(s) =

Z 1

0
hs0(s)u(s

0)ds0 (7)
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It can easily be seen that F and H are positivity-preserving and of norm 1: for
example,

jjF (u)jj1 �
Z Z

1

s
f

�
x

s

�
ju(s)jdsdx

=

Z �
1

s
f

�
x

s

�
dx

�
ju(s)jds

= jjujj1;
since f is a pdf: f � 0 ,

R
f(x)dx = 1. Similary for H, sinceZ 1

0
hs0(s)ds = Prob

�
hs0(s

0"; s0) 2 R�0
�
= 1:

Note that F and H can also be de�ned on the spaces of �nite Radon measures on
R and R>0, respectively, and are also positivity-preserving operators of norm 1 on
these. We will occasionally use this observation to let them act on delta measures,
when (notationally) convenient.

We can now state the main theorem of this section:

Theorem 2.1 Let (rt) be de�ned by (2). Under the above hypotheses on " and

the function ', we have that

P (rt+k = xjrt = �; �t = s) = F �Hk�1
�
�'(�;s)

�
(8)

More explicitely, if k > 1 then, using the notation (5),

pt;k(x : �; s) =

Z
(R�0)k�1

1

sk
f

�
x

sk

�
hsk�1

(sk)hsk�2
(sk�1) � � � h'(�;s)(s2)ds2 � � � dsk:

(9)
Proof. If k = 1 and rt = � and �t = s are given, then rk+1 clearly has pdf

1

'(�; s)
f

�
x

'(�; s)

�
and (8) follows. If k > 1 then

P (rt+k = xjrt = �; �t = s)

= P (�t+k"t+k = xjrt = �; �t = s)

=

Z 1

0
P (�t+k"t+k = xj�t+k = sk; rt = �; �t = s) � P (�t+k = stjrt = �; �t = s) dsk

=

Z 1

0

1

sk
f

�
x

sk

�
� P (�t+k = skjrk = �; �t = s) dsk; (10)
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since "t+k is independent of �t+k = '(rt+k�1; �t+k�1) in our model. Next, rt+k�1 =
�t+k�1"t+k�1, the two factors on the right hand side being independent again.
Hence

P (�t+k = skjrk = �; �t = s)

=

Z 1

0
P ('(sk�1"t+k�1; sk�1) = skj�t+k�1 = sk�1; rt = �; �t = s)

� P (�t+k�1 = st�1jrt = �; �t = s) dsk�1

=

Z 1

0
P ('(sk�1"t+k�1; sk�1) = sk) � P (�t+k�1 = sk�1jrt = �; �t = s) dsk�1

=

Z 1

0
hsk�1

(sk) � P (�t+k�1 = sk�1jrt = �; �t = s) dsk�1:

Substituting this expression in (10) and repeating the same analysis for
P (�t+k�1 = sk�1jrt = �; �t = s) we �nd, after k steps, the formula (9) and there-
fore the theorem. QED

Examples 2.2 To illustrate the use of 2.1 we look at some examples.

(i) Classical GARCH(1, 1): We take

'(r; �) =
�
a0 + a1r

2 + b1�
2
�1=2

; (11)

and "t iid, "t � f . We leave f unspeci�ed, apart form requiring that it has mean
0 and variance 1. We can easily compute the kernel hu(s) in terms of f : if " � f ,
then the pdf of '(u"; u) is:

d

ds
P

��
a0 + a1u

2"2 + b1u
2
�1=2

< s

�
which is equal to 0 if s � p

a0 + b1u2, and equals to

d
ds

�R (s2�a0�b1u2=a1u2)1=2
�(s2�a0�b1u2=a1u2)1=2 f(y) dy

�
=

= 1
2s
�
a1u

2(s2 � a0 � b1u
2)
��1=2P

� f
�
�
�
s2�a0�b1u2

a1u2

�1=2�
if s >

p
a0 + b1u2. If f is symmetric, which is often, if not always, the case in

applications, this simpli�es to:

2s
�
a1u

2(s2 � a0 � b1u
2)
��1=2

f

0@ s2 � a0 � b1u
2

a1u2

!1=2
1A�fs>

p
a0+b1u2g; (12)
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�A being the indicator function of a set A. Popular choices for f are the standard
Gaussian distribution

f(x) =
1

2�
e�x

2=2

and the Student distribution with n > 2 degrees of freedom:

f(x) =

�
1

n� 2

�1=2 � ((n+ 1)=2)

�(n=2)

 
1 +

x2

n� 2

!�(n+1)=2

:

The latter is nowadays often used to model the empirically observed fat tails of
the daily innovations.

These formulae, together with (9), can easily be implemented on a computer,
and used for fast numerical computation of the probability densities (5), as an
alternative to Monte-Carlo: cf. [5]

(ii) EGARCH(1, 1 ): Nelson's exponential GARCH or EGARCH model is given
by: 0@1 + pX

j=1

�jL
j

1A log �2t+1 = ! +

 
1 +

qX
i=1

�iL
i

!
g("t)

with
g(") =  (j"j �E(j"j)) + �"

and L the usual lag or back-shift operator: see Nelson [18] or for example Bollerslev,
Engle and Nelson [3]. If q = 0 and p = 1, this enters into the present paper's
framework, with ' given by

'(r; �) = ��e(!+g(r=�))=2 :

It is again a simple matter to compute the kernel hs0(s), and we only record the
result: if we put C = ! �E(j"j) = ! � R jyjf(y)dy, then, assuming ; � > 0,

hs0(s) =
2

(� + )x
f

�
2(log s� � log s0)� C

� + 

�
�[eC(s0)� ;1)(s)

+
2

(� � )x
f

�
2(log s� � log s0)� C

j� � j
�
�[0;eC(s0)�)(s)

Similar computations can be done for the other asymmetric GARCH models men-
tioned in [3] and for those studied by Dingh and Granger [8] and by Diebolt and
Gu�egan [6], [7].
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(iii) Moments: As a further illustration of our formula (8), we show how it can
be used to compute the moments, or more generally the conditional expectation of
g(rt+k) for reasonable g (meaning the integrals below should converge absolutely).
In fact,

E (g(rt+kjrt = �; �t = s)

=

Z
Rk
�0

E (h(sk"))
�
�k
�=2hs��1(s�)

�
�'(�;s)(s1)ds1 � � � dsk;

" being a random variable with pdf f and thus for g(x) = xn we �nd for the n-th
moment of rt+k:

E(rnt+kjrt = �; �t = s) = �n;f

Z
Rk
�0

snk

�
�k
�=2hs��1(s�)

�
�'(�;s)(s1)ds1 � � � dsk; (13)

where �n;f =
R
xnf(x)dx is the n-th moment of f . Note that this formula only

involves the kernels hs0(s). In the case of a classical GARCH(1, 1) these moments
can also be calculated recursively, using the special form of the ' (the odd ones
will all be 0). Note, however, that such a procedure won't work for a general
GARCH(1, 1) of the form (3).

We end this section by describing the version of formula (9) when both ' and the
pdf of "t depend explicitly on t. In fact, in that case we simply de�ne the kernel
htu(s) by

'(u"t; u) � htu(�) if "t ' f

and replace hsj�1(sj) in (9) by ht+j�1
sj�1

(sj) and skf(x=sk) by skf
t+k(x=sk).

Letting ' depend on time might have some relevance for practical modelling pur-
poses, but it is not clear whether one really would want to use models with time-
dependent distributions for the innovations "t, in view of the numerous identi�ca-
tion and estimation problems this would entail.

3 Multiple period returns and prices

The pro�t & loss function for a multiple period time window [t; t+ k] involves the
k-period return

rt+k;t = log(Pt+k=Pt) = rt+1 + � � � + rt+k (14)

rather than rt+k. In this section we will derive an integral formula for rt+k;t. We
will follow a slightly di�erent approach, by considering the two-component Markov
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process Zt = (rt; �t). Let Pz0 be the probability conditional to Zt = z0 = (�0; s0).
Then we can write for the joint pdf as:

Pz0 ((Zt+1; � � � ; Zt+k) = (z1; � � � ; zk)) =
�k
j=1Pz0 (Zt+j = zj j(Zt+1; � � � ; Zt+j�1) = (z1; � � � ; zj�1)) =

�k
j=1Pz0 (Zt+j = zj jZt+j�1 = zj�1) ;

where in the last line we used the Markov property. It follows that the joint pdf
of (rt+1; �t+1) = ((x1; s1); � � � ; (rt+k = xk; �t+k = sk)), conditional to (rt; �t) =
(�0; s0) can be written (somewhat formally) as

�k
j=1

1

sj
f

 
xj
sj

!
�(sj � '(xj�1; sj�1)); (15)

�(s� v) being the Dirac delta function and s0 = '(�0; s0). The conditional pdf of
rt+k;t = rt+1+ � � �+ rt+k = x is found by integrating (15) against �(x� (x1+ � � �+
xk)). We can evaluate the s1; � � � ; sk - integrals involving the delta -functions and
obtain the following result:

Theorem 3.1 Inductively de�ne functions ŝj = ŝj(x1; � � � ; xj�1) by:

ŝ1 = '(�0; s0)

ŝj = '(xj�1; ŝj)

Then

P (rt+k;t = xjrt = �0; �t = s0) =Z
� � �
Z

1

ŝk
f

�
x� (x1 + � � �+ xk�1)

ŝk

�
�k�1
j=1

1

ŝj
f

 
xj
ŝj

!
dx1 � � � dxk�1: (16)

Remark 3.2 It is possible to rederive theorem 2.1 along these lines, by integrating
(15) over everything except xk and making suitable changes of variables (this is
easy if ' is one-to-one). Also note that (16) does not have anymore the nice
structure of a k-fold operator product, which will make it's asymptotics harder to
analyse in section 6 below.

4 Asymptotics of Laplace Transforms

In this section we prove the following technical result on asymptotics of Laplace
integrals which we use in the remaining sections :
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Lemma 4.1 Let � > 0, s > 0; c > 0 and � 2 R. Then we have an asymptotic
seriesZ 1

0
x��e�cx

��
e�sxdx '

�
s

�

���(�=2)�1
�+1

e�(�+1)c1=(�+1)( s
�
)�=�+1

1X
j=0

Cjs
�j�=(�+1);

(17)
with C0 =

p
2�=�(� + 1)c(1�2�)=2(�+1) .

Remark 4.2 We will in the following for simplicitly only keep the main term of
the various asymptotics, leaving the full series to the reader, and thus simply write
the conclusion of lemma 4.1 as:Z 1

0
x��e�sx�x

��
dx '

s
2�

�(�+ 1

�
s

�

���(�=2)�1
�+1

e�(�+1)( s
�
)�=�+1)

: (18)

In fact, in practical applications to VaR one will often contend oneself with the
principal term of the various asymptotic series we will derive below.

Proof of lemma 4.1: It su�ces to prove (17) for c = 1, by a simple scaling argument.
Note that we cannot directly apply Watson's lemma, since all the derivatives of
x�� exp(�sx� x��) are 0 in 0. We will �rst split the integral in two, as follows:

Z 1

0
x��e�sx�x

��
dx =

Z s�1=(1+�)

0
+

Z 1

s�1=(1+�)
(19)

= I + II;

noting that sx = x�� precisely when x = s�1=(�+1), and then analyze the two parts
separately, using Laplace's method (or complex stationary phase, of one likes). We
start with the second integral, II. Making the change of variables x = s�1=(1+�)y,
we get

II = s
��1
�+1

Z 1

1
e�s

�=(�+1)(y+y��)y��dy;

which, apart from the fore-factor, is a classical Laplace integral of the formZ 1

1
e��'(y)a(y)dy:

The main contribution to the asymptotics comes from the absolute minimum of
the phase function '(y) = y+y�� on [1;1) and/or from the boundary point y = 1.
It is easily seen that '(y) has an absolute minimum on R>0 at y = yc = �1=(�+1).
We distinguish three cases:

12



(i) � > 1. In this case, yc 2 (1;1) and we get a contribution

e��'(yc)
 �

2�

�

�1=2 a(yc)

'00(yc)1=2
+O

�
��3=2

�!

where the O-term stands for a complete asymptotic series in powers ��(1=2)�j .
Computing '(yc) = �1=(�+1) + ���=(�+1) = (�+ 1)���=(�+1) and '00(yc) = �(�+
1)=�(�+2)=(�+1) and remembering the factor in front and the fact that � = s�=(�+1),
we �nd the following contribution to II:

exp

 
(�+ 1)

�
s

�

��=(�+1
!0@q2�=�(� + 1)

�
s

�

���(�=2)�1
�+1

+ � � �
1A ; (20)

the dots indicating lower order terms. We have to compare this with the contri-
bution from the boundary point yc = 1, which is

e�2s�=(�+1
�
(1� �)�1s

����1
�+1 + � � �

�
: (21)

However, these will all be dominated by (20), as follows from the following ele-
mentary observation:

For all � > 0:
(�+ 1)���=(�+1) � 2 (22)

with equality i� � = 1:

To prove (22) we have to show that

log(�+ 1)�
�

�

�+ 1

�
log� � log 2

for � > 0. Now the derivative of the left hand side equals � log�
(�+1)2 which is 0 i�

� = 1 and which is > 0 (< 0) if � < 1 (� > 1). Hence the right hand side has an
absolute maximum in � = 1, which equals log 2. QED

We continue with the proof of lemma 4.1. We consider the two remaining cases
for II:

(ii) � = 1: The minimum yc coincides with the boundary point, and we obtain
1=2 times (20).

(iii) � < 1: In this case yc < 1 and the asymptotics of II will be given by (21),
since only y = 1 will contribute.

13



We will now repeat the analysis for the �rst integral in (19), I. We make the
substitutions x = s�1=(�+1)u�1 and �nd that

I = s(��1)=(�+1)
Z 1

1
e�s

�=(�+1)(u�+u�1)u��2du:

Now the phase function '(u) = u� + u�1 will have an absolute minimum in u =
uc = ��1=(�+1) and we compute, as before, that '(uc) = (� + 1)���=(�+1) and
that

'00(uc) = �(�� 1)��(
��2
�+1) + 2�

3
�+1

= �2=(�+1) (�(�+ 1))���=(�+1):

We now consider the same three cases as for II:

(i') � > 1: Since uc < 1, the only contribution to the asymptotics will come from
the boundary point u = 1, which will give (21).

(ii') � = 1: uc = 1 and we get 1=2 times (20), as before.

(iii') � < 1. Now uc > 1 will give a contribution to the asymptotics of I, which
turns out to be the same as (20) (but with � < 1, of course). By lemma (22) this
contribution will win again from that coming from the boundary point.

It now su�ces to add up the asymptotics of I and II and observe that, once more,
by (22), in cases (i)+(i0) and (iii)+(iii0) the contribution of the interior minimum
will dominate that of the boundary point. QED

5 Precise asymptotics for rt+k given rt

We will now analyze the jxj ! 1 asymptotics of

pk(x) = pk(x; t; �0; s0) = P (rt+k = xjrt = �0; �t = s0)

for �xed k, (rt)t being given by a classical GARCH(1, 1), with

'(r; �) = (a0 + a1r
2 + b1�

2)1=2 (23)

and normally distributed "t, iid.

The asymptotics of pk(x) for arbitrary k will follow inductively from theorem 2.1.
The main step is the following lemma. Recall the de�nition (7) of H and the
formula (12) for the kernel in the case of a GARCH(1,1), where we take

f(x) = (2�)�1=2e�x
2=2;

the standard Gaussian density.
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Lemma 5.1 Suppose that v(s) ' Cs�e�cs� for 0 < s ! 1, where � 2 R, c > 0
and � > 0, suppose that ' is given by ?? Then:

Hv(s) ' C 0s(2���)=(�+2)e�c
0s2�=(�+2)

; s!1;

where

c0 =
1

2
(�+ 2)(�a1)

� �
�+2 c

2
�+2

and

C 0 =
2Ce

b1
2a1p

�+ 2
(c�a1)

� �+1
�+2 :

Proof. We �rst treat the case of an ARCH(1): b1 = 0, which is computationally
somewhat simpler. In this case

Hv(s) = (s)

Z 1

0

1

t
e�(s2�a0)=2a1t2v(t)dt;

where

(s) =
1p
2�

2sp
a1(s2 � a0)

;

for s2 > a0, while v(s) = 0 for s2 � a0. Making the change of variables z = 1=t2,

we obtain for s2 > a0, putting ~s = s2�a0
2a1

:

Hv(s) =
1

2
(s)

Z 1

0
e�~sz 1

z
v

�
1p
z

�
dz:

The integral on the right hand side is the Laplace transform of z�1v(z�1=2) eval-
uated in (s2 � a0)=2a1, whose large s-behavior is completely determined by the
small z-behavior of

1

z
v

�
1p
z

�
' Cz�(�=2)�1e�cz

��=2
; z ! 0;

by the hypothesis on v. Part (i) of the lemma now follows from lemma 4.1
and straightforward calculations. We use here that exp(�c0(s2 � a0)

�=�+2) '
exp(�c0s2�=�+2) for s !1, since �=� + 2 < 1 (this would in fact be false other-
wise).
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The argument for a GARCH(1; 1) (b1 6= 0 ) is slightly more involved. First, in
that case,

Hv(s) =
2seb1=2a1p

2�a1

Z p(s2�a0)=b1

0

1p
t2(s2 � a0 � b1t2)

e�(s2�a0)=2a1t2v(t)dt

if s2 > a0 and Hv(s) = 0 otherwise. Note that the integral no longer extends
over the whole of the positive reals, as it did for an ARCH(1). Making the same

change of variables z = 1=t2 as before, we obtain that, putting 1(s) =
2seb1=2a1p

2�a1

Hv(s) =
1

2
1(s)

Z 1

b1=(s2�a0)

r
z

s2 � a0 � b1z�1
e
�(

s2�a0
2a1

)z 1

z
v(

1p
z
)dz

=
1

2
1(s)

1p
b1

Z 1

es�1

r
zesz � 1

e
�(

b1
2a1

)esz 1
z
v

�
1p
z

�
dz;

where we put es = (s2 � a0)=b1, for notational convenience. One easily see's that
the main contribution to the es ! 1-behavior of this integral will again come
from the asymptotics of z�1v(z�1=2) as z ! 0, which, as before, is given by
Cz�(�=2)�1 exp(�cz��=2). We therefore have reduced the problem to the asymp-
totics of the following integral:

Z 1

es�1

r
zesz � 1

e�b1esz=2a1z�(�=2�1)e�cz
��=2

dz (24)

= es(��1)=2
Z 1

1

r
w

w � 1
e�b1w=2a1w�(�=2)�1e�ces�=2w��=2dw

=
2

�
es(��1)=2

Z 1

0

�
1

1� y2=�

�1=2

e�b1y
�2=�=2a1y(�=�)�1e�ces�=2ydy;

where we subsequently made the changes of variables w = esz and y = w��=2 (note
that in the second integral the phase function with minus the big parameter in
front has it's minimum in w = 1 ). The integral on the right is again a Laplace
transform, whose main order asymptotic behavior is equal to that ofZ 1

0
y(�=�)�1e�b1y

�2=�=2a1e�ces�=2ydy: (25)

We can replace the interval of integration by [0;1), thereby making an error of the
form O (spower exp(�(const)s�) which will be of lower order, since 2�=(�+2) < �
for � > 0. The resulting integral is a Laplace transform of the kind studied in
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lemma 4.1, with c equal to b1=2a1, � replaced by �(�=�) + 1, � by 2=� and s by
ces�=2. After some calculations we �nd the asymptotics. QED

Remark 5.2 It is surprising that the only di�erence between an ARCH(1) and a
GARCH(1,1), as concerns the asymptotics of lemma 5.1, is the constant in front,
which simply get's multiplied by an exp(b1=2a1) in case of a GARCH.

Lemma 5.3 Suppose that v(s) ' Cs�e�cs� for 0 < s!1, where � 2 R , c > 0
and � > 0, suppose that ' is given by (??) Then:

Fv(s) ' C 0jsj(2���)=(�+2)e�c
0s2�=(�+2)

; s!1;

where

c0 =
1

2
(�+ 2)c

2
�+2 (�)�

�
�+2

and

C 0 =
2Cp
�+ 2

(c�)�
�+1
�+2 :

Proof.

Fv(s) =
2p
2�

Z 1

0

e�
x2

2s2

s
v(s)ds

=
1p
2�

Z 1

0

p
ue�

ux2

2 v(
1p
u
)

1

u3=2
du

=
1p
2�

Z 1

0
e�

ux2

2
1

u
v(

1p
u
)du;

making the change of variables u = 1=s2. The integral on the right hand side is

the Laplace transform of u�1v(u�1=2) evaluated in x2

2 , whose large u-behavior is
completely determined by the small u-behavior of

1

u
v

�
1p
u

�
' Cu�(�=2)�1e�cu

��=2
; u! 0;

by the hypothesis on v. The lemma now follows from lemma 4.1 and straightfor-
ward calculations.

We next derive the asymptotic behavior of Hk(�(')).
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Lemma 5.4

qk(s) = Hk(�'(�0;s0))(s); k > 1

' Cks
�(1�1=k)e

� k

2a1'
2=k
0

s2=k

; s!1;

where

Ck =
e
kb1
2a1p
2�a1

s
2k�1

k
'
�1=k
0 ;

with

'0 = '(�0; s0) = (a0 + a1�
2
0 + b1s

2
0)

1=2:

Proof.

We will show by induction that qk ' Cks
�k exp(�cks�k), where �k = �(1 � 1=k),

ck = k

2a1'
2=k
0

, �k = 2
k and Ck is given in the statement of the lemma. First, for

k = 1:

q1(s) = H(�'(�0;s0))(s);

=
1p
2�

2sq
a1'2

0(s
2 � a0 � b1'2

0)
e
� 1

2

s2�a0�b1'
2
0

a1'
2
0

' 1p
2�a1

1

'0
e

b1
2a1 e

� s2

2a1'
2
0 ; s!1;

as required.
We now assume that the lemma is true for k � 1. Since qk(s) = H(qk�1)(s), we
have by lemma 5.1:

qk(s) ' C 0s(2�k�1��k�1)=((�k�1+2))e�c
0s

2�k�1
�k�1+2

; s!1 (26)

Now
2�k�1

�k�1+2 = 2=k = �k and, similary,

2�k�1 � �k�1

�k�1 + 2
= �(1� 1=k) = �k;

using the expressions for �k�1 and �k�1. From lemma 5.1 we get:

c0 =
1

2
(�k�1 + 2)c

2
�k�1+2

k�1 (�k�1a1)
� �k�1

�k�1+2

=
k

2a1'
2=k
0

= ck;

18



after a computation. Finally, by lemma 5.1 again,

C 0 =
2e

b1
2a1p

�k�1 + 2
(ck�1�k�1a1)

� �k�1+1

�k�1+2

= 2e
b1
2a1

s
k � 1

2k
(

1

'
2=(k�1)
0

)�1=2kCk�1

= e
b1
2a1

s
2(k � 1)

k
'
1=k(k�1)
0 Ck�1;

with

C1 =
1p
2�

1

a1

1

'0
e

b1
2a1

and a simple induction allows us to verify the formula for Ck. QED

We can now state the main result of this section:

Theorem 5.5 Let (rt)t be a GARCH(1, 1) with ' given by (23) and independent,

normally distributed "t with mean 0 and variance 1. Fix a time t and a time-

horizon t+ k and suppose that rt = �0 and �t = s0. Let

ck =
1

2
ka

�(1�1=k)
1 (a0 + a1�

2
0 + b1s

2
0)
�1=k

and

Ck =
e
(k�1)b1

2a1p
2�

a
� 1

2
(1�1=k)

1

s
2k�1

k
'
�1=k
0 :

Then

pt;k(x; �0; s0) ' Ck
e�ckjxj

2=k

jxj1�1=k
; x! �1 (27)

Proof.

The proof relies on the previous lemma. With the same notations as before,

pt;k(x; �0; s0) = F (Hk�1(�'0)) = F (qk(x)):

For k = 1, we get:

F (�'0)(x) =
1

'0

p
2�

e
� x2

2'2
0 :

For k > 1 we use the lemma 5.3 and the lemma 5.2 with

v(s) = qk�1(s) ' Ck�1s
�k�1e�ck�1s

�k�1
:
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Thus,

pk(x) = F (v)(x) ' C 0jxj(2�k�1��k�1)=(�k�1+2)e�c
0x

2�k�1
�k�1�2

;

with C 0 and c0 given in the lemma 5.2. After some computations we get:

ck =
k

2

1

a
k�1=k
1

1

'
2=k
0

;

and

Ck =
e
(k�1)b1

2a1p
2�

a
� 1

2
(1�1=k)

1

s
2k�1

k
'
�1=k
0 ;

as required. QED

6 Asymptotics of multi-period returns

If rt represents a one-period logarithmic return considering rt+k by itself does not
make sense. A �nanciallymore relevant quantity here will be the corresponding k-
period return, over [t; t+k], which is given by (14): rt+k;t = rt+1+rt+2+ � � �+rt+k.
The main result of this section is that , qualitatively, the extreme values of rt+k;t,
conditional on given values for Xt and �t at time t, behave like those of rt+k:

Theorem 6.1 Let (rt)t follow a classical GARCH(1, 1 ), with '(r; �) = (a0 +
a1r

2+b1�
2)1=2 and standard normally distributed ("t)t, where we moreover suppose

that b1 > 0. Let rt+k;t be de�ned by (14). Fix a k and let �0 2 R; s0 > 0. Then

there exist constants ck; c
0
k; Ck; C

0
k > 0, depending on k; a0; a1; b1; �0 and s0 such

that for jxj � 1,

C 0
kjxj�(1�1=k)e�ckjxj

2=k � P (rt+k;t = xjrt = �0; �t = s0) � Ckjxj�(1�1=k)e�ckjxj
2=k

(28)

Explicit values for the constants can be extracted from the proof below: we won't
do that here. Also, the restriction to b1 > 0 is probably technical.

Proof. The proof is based on formula (16) from section 3, which in our situation
reads:

P (rt+k;t = xjrt = �0; �t = s0) = (29)�
1

2�)

�(k�1=2) R
R � � �

R
R�k�1

j=1
1
ŝj
e�x

2
j=2ŝ

2
j 1
ŝk
e�(x�(x1+���+xk�1))

2=2ŝ2kdx1 � � � dxk�1;
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where the standard deviations ŝj = ŝj(x1; � � � ; xj�1) are de�ned inductively by

ŝ21 = (a0 + a1�
2
0 + b1s

2
0)

1=2

ŝ2j = (a0 + a1x
2
j�1 + b1ŝ

2
j�1)

1=2:

It easily follows that

ŝ2j =
j�1X
�=1

a1b
��1
1 x2j�� + e� ;

where e1 = ŝ21 and ek = a0+b1ek�1. We will in fact establish a slightly more general
result, replacing the ŝ2j in (29) by functions Lj�1 = Lj�1(x1; � � � ; xj�1) which are
a�ne in in x21; � � � x2j�1 (note the shift by 1 of the index w.r;t. the notation used
for ŝj). Here

Lj(x1; � � � ; xj) = 
(j)
0 +

jX
�=1

(j)� x2� (30)

For our proof to work we will have to impose the condition:

(j)� > 0; 0 � � � j (31)

Note that L0 is thus just a strictly positive constant. The ŝ2j coming from a
GARCH(1, 1 ) with b1 > 0 fall into this class; those coming from an ARCH un-
fortunately do not.

We will also put an adjustable multiplicative constant � > 0 in the exponent of
the �nal factor of (29) and estimate the functions qk(x) de�ned by

qk(x) = qk(x; �; L0; � � � ; Lk�1) = (32)

Z
R
� � �
Z
R

 
�k�1
j=1

e�x
2
j=2Lj�1p
2�Lj�1

!
1p

2�Lk�1
e��(x�(x1+���xk�1))

2=2Lk�1dx1 � � � xk�1:

More precisely, we will prove the following inequalities, from which theorem 6.1
will be an immediate consequence:

Claim 6.2 For given k, a�ne forms L0; � � �Lk�1 as in (30), satisfying (31) and

given � > 0, there exist strictly positive constants c; c0; C and C 0 such that

Cjxj�(1�1=k)e�cjxj
2=k � qk(x) � C 0jxj�(1�1=k)e�c

0jxj2=k (33)

The constants c; c0; C and C 0 can be chosen to depend locally uniformly on � and

the coe�cients of the Lj.
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We turn to the proof of the claim, which will be by induction on k. The idea is
to estimate qk(x) from above and from below by a Laplace transform of a qk�1

with slightly modi�ed � and L 's, modulo a neglegible error, and then use lemma
4.1 again. To accomplish this, we will eliminate the x1 from all factors under the
integral sign of (32), except the �rst one. We will use the following elementary
inequality:

Lemma 6.3 For all " with 0 < " � 1 and all a; b 2 R one has that

C�
b;"e

�(1+")a2 � e�(a+b)2 � C+
b;"e

�(1�")a2 ; (34)

where C�
b;" = exp(�("�1 + 1)b2) and C+

b;" = exp(("�1 � 1)b2)

Proof. To prove for example the upper bound, write exp((1�")a2) exp(�(a+b)2) =
exp(�"a2+2ab+ b2) and maximize over a. The lower bound is proven in the same
way.

It is clear that (33) holds for k = 1. Now suppose that it holds for k� 1. We then
have to prove it for k. We �rst establish the upper bound in (33). Apply the second
inequality in (34) with a =

p
�(x�(x2+� � �+xk))=

p
2Lk�1 and b =

p
�x1=

p
2Lk�1.

The constant C+
b;" then becomes

C+
b;" = e("

�1�1)�x21=2L
2
k�1 � e("

�1�1)�x21=2
(k�1)
0 ;

and we thus see that it can be absorbed in the �rst factor in the integrand of (32),
exp(�x21=2L0), provided " is su�ciently close to 1. In fact, Cb;" < expx21=4L0 if

(1 + 
(k�1)
0 =2�L0)

�1 < " < 1

and thus, with such a choice of " we have that

qk(x) �
Z
R
� � �
Z
R

e�x21=4L0

p
2�L0

�
 
�k�1
j=2

e�x
2
j=2Lj�1p
2�Lj�1

!
� (35)

� 1p
2�Lk�1

e�(1�")�(x�(x2+���xk�1))
2=2Lk�1dx1 � � � xk�1:

We now split this integral asZ
jx1j�1

dx1
e�x21=4L0

p
2�L0

Z
Rk�2

(� � �) +
Z
jx1j>1

dy1
e�x21=4L0

p
2�L0

Z
Rk�2

(� � �) (36)

22



= I + II

and estimate the two pieces seperately. We �rst show that I is of the same order
as a suitable qk�1(x). In fact, if jx1j � 1, then for � � 1,

Lj(x1; � � � xj) � (
(j)
0 + 

(j)
1 + 

(j)
2 x22 + � � �+ 

(j)
j x2j )

=: L�j(x2; � � � ; xj):

One also has that
L�j
Lj

� max(1; (
(j)
0 + 

(j)
1 )=

(j)
0 );

this without any restriction on (x1; � � � ; xj). It follows that, for a suitable constant
C > 0 (which we won't specify),

jIj � C

Z
jx1j�1

Z
R
� � �
Z
R

e�x
2
1=4L0

p
2�L0

�
0@�k�1

j=2

e�x
2
j=2L

�
j�1q

2�L�j�1

1A
� 1q

2�L�k�1

e�(1�")�(x�(x2+���xk�1))
2=2L�k�1dx1 � � � xk�1:

We recognize the integral over dx2 � � � dxk�1 as a constant times qk�1(x; (1 �
")�;L�2; � � � ; L�k�1), and therefore, by the induction hypothesis, for suitable con-
stants c; C,

jIj � Cjxj�(1�1=(k�1))e�cjxj
2=(k�1)

; (37)

which is of strictly lower order than the inequality we're trying to establish for
qk(x).

We next turn to the integral II. If jx1j > 1, then

Lj(x1; � � � ; xj) � (
(j)
0 + 

(j)
1 )x21 + 

(j)
2 x22 + � � �+ 

(j)
j x2j

= x21

 

(j)
0 + 

(j)
1 + 

(j)
2

x22
x21

+ � � �+ 
(j)
j

x2j
x21

!

=: x21
eLj

�
x2
x1
; � � � ; xj

x1

�
;

the last equation de�ning eLj . Similarly, for jxj > 1 we can estimate

Lj(x1; � � � ; xj) � 
(j)
1 x21 + 

(j)
2 x22 + � � �+ 

(j)
j x2j
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= x21

 

(j)
1 + 

(j)
2

x22
x21

+ � � �+ 
(j)
j

x2j
x21

!

� cx21
eLj

�
x2
x1
; � � � ; xj

x1

�
; (38)

(39)

provided that

c � 
(j)
1


(j)
0 + 

(j)
1

:

Note that to have (38) with a c > 0 we need here that 
(j)
1 > 0, which is insured

by (31). Substituting these inequalities in (32), we �nd that for suitable C > 0,

II �
Z
jx1j>1

e�x21=4L0

p
2�L0

0@�k�1
j=2

e�x
2
j=2x

2
1
eLj�1

jx1j
q
2� eLj�1

1A �
� 1

jx1j
q
2� eLk�1

e�(1�")�(x�(x2+���xk�1))
2=2x21eLk�1dx1 � � � xk�1:

If we change variables to yj := xj=x1 for 2 � j � k � 1 we see that the previous
inequality can be written as:

II � C

Z
jx1j>1

1

jx1j
e�x21=4L0

p
2�L0

qk�1

�
x

x1
; (1� ")�; eL2; � � � ; eLk�1

�
:

By the induction-hypothesis, the qk�1(x=x1) under the integrand is less than or
equal to

C

� jxj
jx1j

��
e�c(jxj=jx1j)

�

with
� = 2=(k � 1); � = �(1� 1=(k � 1)) (40)

and thus, after a rescaling,

II � jxj�C
Z
jx1j>1

jx1j���1e�c(jxj=jx1j)
�
e�x

2
1dx1

with di�erent constants c; C > 0 (in which are absorbed L0 and also the various
factors of 2�). We assume now wlog that x > 0 and we write the integral as twice
the integral over [1;1). We again want to use lemma 4.1 and for this we rewrite
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our integral as a Laplace transform with big parameter, by introducing the new
variable z = x��1 . Then the right hand side of (41) is less or equal a constant times

x�
Z 1

0
z(�=�)�1e�z

�2=�
e�cx

�zdz

and by lemma 4.1, with s = cx� and �; � replaced by, respectively, 2=� and
1� (�=�), we �nd that

II � Cx(2���)=(�+2) exp(�cx2�=(�+2)):

Since, by (40), the two exponents of x in this formula are, respectively, �(1 �
1=k) and 2=k, this proves the desired upper bound for II and thus for qk(x),
remembering (36) and (37).

We next turn to the lower bound for qk. By the �rst inequality of lemma (34), we
see in the same way as before that

e��(x�(x1+���+xk�1))
2=2Lk�1 � C�

b;"e
�(1+")�(x�(x2+���+xk�1))

2=2Lk�1

where
C�
b;" = e��(1+"

�1)x21=2Lk�1 � e��(1+"
�1)x21=2

(k�1)
0 :

We can combine Cb;" with the �rst factor of the integrand of the de�ning equation

(32) of qk(x) into a factor e
��x21 . Doing so, and limiting the x1-integration in (32)

to jx1j > 1, we �nd that

qk(x) �
Z
jx1j>1

Z
R
� � �
Z
R

e��x21p
2�L0

�
 
�k�1
j=2

e�x
2
j=2Lj�1p
2�Lj�1

!
(41)

� 1p
2�Lk�1

e��(1+")(x�(x2+���xk�1))
2=2Lk�1dx1 � � � xk�1:

As before, we next get rid of the x1 in the L1; � � � ; Lk�1; �rst, if j � 1, then

Lj(x1; � � � xj) � x21

 

(j)
1 + 

(j)
2

x22
x21

+ � � �+ 
(j)
j

x2j
x21

!

=: x21L̂j

�
x2
x1
; � � � ; xj

x1

�
:

Next, if jx1j > 1, then

Lj(x1; � � � ; xj) � (
(j)
0 + 

(j)
1 )x21 + � � � + 

(j)
j x2j

� cx21L̂j

�
x2
x1
; � � � ; xj

x1

�
;

(42)
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provided that c � (
(j)
0 + 

(j)
1 )=

(j)
1 ; there exists such a (�nite) c since 

(j)
1 > 0

by (31). Substituting these inequalities in (41) and making the same change of
variables yj = xj=x1 as before (j � 2) one �nds that, for a suitable constant C > 0,

qk(x) � C

Z
jx1j>1

e��x
2
1

jx1j qk�1

�
x

x1
; (1 + ")�; L̂2; � � � ; L̂k�1; �(1 + ")

�
:

Using the induction hypothesis and lemma 4.1, we �nd the required lower bound
for qk(x). QED

7 Application to VaR

The asymptotics which we established are relevant for risk analysis. We illustrate
this with a multi-period VaR-estimate based on theorem 6.1. We �rst note that
the upper bound from that theorem implies that

Prob (rt+k;t < �x) � Ck

Z 1

x
y�(1�1=k)e�cky

2=k
dy (x � 0):

The right hand side can be evaluated in terms of (one of) the incomplete �-
function(s),

z;1(x) :=

Z 1

x
tz�1e�tdt;

leading to

Prob (rt+k;t < �x) � 1

2
kc

�1=2
k Ck1=2;1

�
ckx

2=k
�

(x � 0) (43)

together with a similar lower bound, with ck and Ck replaced by c0k and C 0
k,

respectively. Note that all these can be expressed in terms of a single special
function, 1=2;1.

Next, for a given random variable X we denote by FX it's cumulative distri-
bution function and by q�(X) it's �-th lower quantile:

q�� (X) = inffy : FX(y) = �g; � 2 [0; 1]

and, more generally, for any non-negative non-decreasing function F we introduce

q�� (F ) = inffy : F (y) = �g;

so that q�(X) is the same as q�(FX) (this abuse of notation won't cause confusion).
We note the following trivial observation, whose proof is left to the reader:
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Lemma 7.1 Let F and G be non-decreasing continuous functions de�ned on a

semi-in�nite interval (�1; a), such that F � G there. Let � be in the range of G.
Then

q�� (G) � q�� (F ):

We next recall that the k-period Value at Risk V aR1��(k) with con�dence
1� � is de�ned by

V aR1��(k) = supfV � 0 : Prob(Pt+k � Pt < �V) = �g
= �q�� (Pt+k � Pt)

' �q�(rt+k;t)Pt;
where we made the usual approximation er � 1 ' r for r small (this could easily
have been circumvented, at the cost of complicating the formula). Applying the
lemma with F = Frt;t+k and G equal the right hand side of (43), both with domain
(�1; 0), and observing that q�(G) is simply G�1(�), we easily �nd that

V aR1��(k) �
�
1

ck
�1
1=2;1

�
2�
p
ck

kCk

��k=2
Pt;

and a similar lower bound, with the constants replaced by the primed ones. This
is the estimate which should replace the RiskMetrics proposal (2). Although more
complicated than the latter one, it is quite explicit and can be easily evaluated,
either numerically or asymptotically for small �. It is clear that for practical
applications a good control of the constants is essential. As already stated, we wil
return to that in a companion paper.
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