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Abstract

We propose a technique to avoid spurious detections of jumps in high-

frequency data via an explicit thresholding on available test statistics. We

prove that it eliminates asymptotically all spurious detections. Monte

Carlo results show that it performs also well in finite samples. In Dow

Jones stocks, spurious detections represent up to 50% of the jumps de-

tected initially. For the majority of stocks, we do not detect clustering

in time of jump occurrences. During the three years of our study (2006-

2008), we find no single cojump affecting all stocks, although on a few

occasions, more than 50% of the Dow Jones constituents jump simultane-

ously. However, if we consider industry sectors separately, we observe a

significant number of cojumps which indicates the presence of sector-level

news. Finally, we relate detected jumps to macroeconomic and company-

specific news releases. Only announcements directly affecting the balance

sheet such as share buybacks increase the likelihood of a jump. Fed funds

rate target news have a visible but not significant impact.
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1 Introduction

Numerous methods to test for the presence of jumps in high-frequency data

have been introduced recently. These techniques are usually applied to test the

null hypothesis of no jumps in a particular day, over a series of days. When

implementing such a procedure, we are conducting a multiple test, since we

simultaneously test for the presence of jumps over several days (instead of just

one). By construction, such a multiple testing setting leads to a number of spu-

rious detections. The first contribution of this paper is to propose a technique to

avoid spurious detections of jumps via an explicit thresholding on available test

statistics. We prove that if we consider test statistics above a certain threshold

level only, the likelihood of making spurious detections disappears asymptoti-

cally. Monte Carlo results show that our approach behaves also well in finite

samples. Spurious detections are eliminated completely, and the effect on the

power to detect genuine jumps is not significant in most settings. We use the

adjusted ratio statistic of Barndorff-Nielsen and Shephard (2006) (henceforth

BNS) as the underlying test to detect jumps. However, our method to eliminate

spurious detections can be applied just as easily on other existing jump detec-

tion techniques, such as Aı̈t-Sahalia and Jacod (2009), or Andersen, Bollerslev

and Dobrev (2007).

We start by investigating the number of jump days selected by error in the

U.S. equity market if we do not account for spurious detections. We collect

high-frequency returns from the Trades and Quotes (TAQ) database for the

Dow Jones Industrial Average Index (DJIA) stocks, over the three-year period

of January 2006 to December 2008. We find that the number of jumps is reduced

by 50% after thresholding the spurious detections, and amounts to around 40

per year.

The second contribution is the investigation of the dynamic features of ir-

regular jump arrivals and the relation between simultaneous jumps in the indi-

vidual stocks and jumps in the index. Our Monte Carlo simulations illustrate

the importance of eliminating the spurious detections in order to be able to

observe the true dynamics of jumps. We show for example that the power of

the test we use to detect clustering of jump arrivals decreases significantly if

we do not remove the spurious jumps. The different results obtained before

and after thresholding further highlight the impact of spurious detections. For

the majority of Dow Jones stocks, we do not detect clustering in time of jumps
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occurrences. During the three years of our study there is no day where the 30

stocks all jump simultaneously, although we do detect a jump in 50% or more

of the stocks on a few occasions. However, if we consider industry sectors sep-

arately, we observe a number of cojumps significantly larger than if the stocks

jumped independently which indicates the presence of sector-level news.

The third contribution of our paper is to relate jumps occurrences and news

announcements. Jumps in individual stocks can be generated by either stock-

specific news or common market-level news. Market-level news can cause jumps

in many stocks simultaneously and can induce discontinuities even in a diver-

sified index. We first study whether macroeconomic news cause stock prices

to jump and find no statistically significant effect. The press releases follow-

ing scheduled Federal Open Market Committee (FOMC) meetings are the only

announcements which increase the likelihood of a jump, and are also the main

reason explaining the rare cojumps affecting more than 50% of the stocks. The

importance of removing spurious detections with e.g. our thresholding tech-

nique is highlighted once again since the FOMC meeting effect is not apparent

before thresholding. Our conclusion that in the equity market a majority of

announcements are not followed by a jump differs from the findings in other

markets, e.g. Dungey, McKenzie and Smith (2009) find that two thirds of co-

jumps in bond prices coincide with a scheduled US news release.

Next, we focus on stock-specific news. We find that jumps do not occur

systematically on scheduled events such as quarterly earnings or dividend an-

nouncements. Finally, we use the Factiva news database to relate jumps to a

wider set of company-specific events. In particular, we consider news stories

from two major newswires, i.e., Dow Jones News Service (DJNS) and Reuters

News. By examining the content of news, we can analyze the impact of a variety

of unscheduled and uncategorized events and are not limited to a predetermined

set of event types such as earnings announcements, mergers, or analysts’ recom-

mendations. To our knowledge, we are the first to perform an extensive analysis

of the relation between news media publications and jumps. Our results show

that news releases are not very likely to cause jumps. Companies purposefully

shift most important announcements after the bell or early in the morning in

order to avoid uncontrolled investor reactions and the consequent impact on

the stock price. The only news type for which the increase in the likelihood of

a jump is statistically significant is “Share Buybacks”. Our conclusions differ

from the findings of Lee and Mykland (2008) who find a story for each day they
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detect a jump.

From our results it is evident that a number of jumps in the equity market

occur in the absence of any news events. One explanation is that these jumps

without a news release are the consequence of liquidity pressures captured in the

order book. Jiang, Lo and Verdelhan (2010) show that liquidity shocks, such

as changes in the bid-ask spread and market depth, have significant predictive

power for jumps in bond prices.

The remaining of the article is organized as follows. Section 2 presents

our methodology to eliminate spurious detections of jumps. Section 3 shows

results of our Monte Carlo study, and Section 4 presents empirical results on

the number of jumps. Section 5 investigates the dynamics of jump arrival

times. Section 6 examines the occurrences of cojumps, and Section 7 the relation

between jump arrivals and news releases. The appendix contains the proof of

the theorem and our Monte Carlo study showing the good properties of the

runs test when detecting time clustering of jumps.

2 Detecting spurious jumps

2.1 Setting and assumptions

Let Xt for continuous time t ≥ 0 denote the log-price of the asset. The

workhorse model of modern asset pricing theory assumes that X follows an

Itô semimartingale. The semimartingale assumption rules out arbitrage op-

portunities. A semimartingale can be decomposed into the sum of a drift, a

continuous Brownian-driven part, and a discontinuous, or jump, part:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs︸ ︷︷ ︸

continuous part

+ Jt︸︷︷︸
jump part

,

where W denotes a standard Brownian motion and J is a pure jump process.

If we focus on finite activity jumps, the jump part can be written as

Jt =

Nt∑
j=1

cj ,

where N is a simple counting process (which is assumed finite for all t) and the

cj are nonzero random variables.

In this section we present our technique to improve results from existing

methods to detect jumps in high-frequency financial returns when we apply
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them over many days. The idea of detecting jumps deserves clarification, es-

pecially as in discretely sampled data, every change in the price is by nature a

discrete jump. In reality, the jump detection literature is attempting to answer

the following question. Given that we observe in discrete data a change in the

asset return of a large magnitude, what does that tell us about the likelihood

that such a change involves a jump, as opposed to just a large realization of the

Brownian part?

2.2 Thresholding technique

Numerous jump detection methods have been developed since high-frequency

data have become easily available. In a typical empirical application, the jump

tests are applied to detect the jump days over a sample period. For each day

a test statistic S is computed to test the null hypothesis of no jumps. As we

perform the tests for many days simultaneously, we are actually conducting a

multiple test, which by nature leads to making a proportion of spurious de-

tections equal to the significance level of the individual tests. For example, if

we perform the individual tests at the 5% level during a one-year period with

no single jump, by construction we erroneously select on average more than 12

days as containing a jump. These spurious detections have an important impact

when studying the distribution of jumps dynamics, as shown in our simulation

experiments.

One major contribution of the present paper is to propose a technique that

allows to eliminate the spurious detections, based on the following theoretical

result developed in detail in the appendix. Denote by N the number of days

in the study, and by n the number of observations per day used to compute

each individual test statistic. We obtain a series of daily statistics which can

be written as (Sn1 , . . . , S
n
N ). For most available tests, under the null hypothesis

of no jumps, the statistics converge to independent standard normal random

variables. Theorem 1 of the appendix states that, under some technical condi-

tions about the relative rate of convergence of n with respect to N and about

the underlying price process, we get, under the null hypothesis of no jumps,

P

[
sup
t
|Snt | ≤

√
2 logN

]
→ 1, as N,n→∞.

This means that, if there are no jumps, the event that the largest and the small-

est of the entries of the vector (Sn1 , . . . , S
n
N ) stay within

[
−
√

2 logN,
√

2 logN
]
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becomes certain for large n and N . The bound
√

2 logN is the so-called uni-

versal threshold for a sample of size N . As explained in Donoho and Johnstone

(1994), it is asymptotically the expected maximum absolute value of a sequence

of N independent standard normal random variables.

Using the theorem, we obtain a method to eliminate spurious detections

that can be applied very easily on top of most existing jump detection tech-

niques. In the first step, we compute the test statistics individually for each

day. In the second step, we discard statistics below the threshold
√

2 logN .

This way, spurious detections of jumps become negligible with high probability.

The precise statement and the proof of the theorem are in the appendix, for a

general test statistic, as well as for the specific example of the adjusted ratio

statistic of BNS1.

2.3 Available jump detection tests

Determining from high-frequency data whether an asset returns process has

jumps has been considered by a number of authors. Carr and Wu (2003) ex-

ploit the differential behavior of short-dated options. Barndorff-Nielsen and

Shephard (2006) introduce a test based on the difference between the bipower

variation and the quadratic variation. Andersen, Bollerslev and Diebold (2007)

and Huang and Tauchen (2005) study financial datasets using multipower vari-

ations, in order to assess the proportion of quadratic variation attributable to

jumps. Andersen, Bollerslev and Dobrev (2007) and Lee and Mykland (2008)

introduce two very similar tests which compare each intra-day return to a local

measure of volatility. Fan and Wang (2007) develop wavelet methods to esti-

mate jump locations and jump sizes from a discretely observed process with

market microstructure noise. Jiang and Oomen (2008) construct a test moti-

vated by the hedging error of a variance swap replication strategy. Aı̈t-Sahalia

and Jacod (2009) propose a test based on truncated power variations computed

at different sampling frequencies. A test for jumps could be easily constructed

using the MedRV or MinRV measures of Andersen, Dobrev and Schaumburg

(2009). Other tests include Mancini (2009), and Lee and Hannig (2010).

1The jump detection methods of Andersen, Bollerslev and Dobrev (2007) and Lee and Myk-

land (2008) result in performing a number of tests simultaneously within each day. Andersen,

Bollerslev and Dobrev (2007) control for the size of the multiple jump tests using a Bonferroni

correction. Lee and Mykland (2008) use the extreme value theory. To our knowledge we are

the first to rigorously account for multiple testing over many days.
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2.4 BNS jump detection technique

Our thresholding technique can be applied to most existing jump detection

techniques. In the present paper, we use the standard test of BNS. The essence

of the BNS jump detection method is to compare the realized quadratic vari-

ation which incorporates volatility originating from jumps (if present) to the

realized bipower variation which is robust to jumps. Each day t = 1, . . . , N , we

observe the log price process X at the discrete times i∆n, i = 1, . . . , n+ 1, ∆n

is the sampling interval and n is large. We denote by Xt,i∆n the ith intraday

price observation on day t, and by ∆Xn
t,i ≡ Xt,(i+1)∆n

−Xt,i∆n the ith intraday

return on day t, i = 1, . . . , n. The realized quadratic variation (RV ) and the

realized bipower variation (BV ) of X are defined as follows and converge to

different quantities of the underlying jump-diffusion process.

RV n
t ≡

n∑
i=1

(∆Xn
t,i)

2 −−−→
n→∞

∫ t

t−1
σ2
sds+

Nt∑
i>Nt−1

c2
i ,

BV n
t ≡

n∑
i=2

|∆Xn
t,i||∆Xn

t,i−1| −−−→n→∞
µ2

1

∫ t

t−1
σ2
sds,

where µ1 is a constant. If the jumps are of finite activity, the probability of

observing jumps in two consecutive returns approaches zero. Consequently, the

product of any two consecutive returns is asymptotically driven by the diffusion

component only and the contribution of jumps is eliminated in the bipower

variation. In the remaining of the paper we use the adjusted ratio statistic of

BNS defined below. It is the preferred test in Huang and Tauchen (2005). Up

to a scaling factor, the ratio
µ−2
1 BV nt
RV nt

−1 converges to a standard normal random

variable under the null hypothesis of no jumps:

Snt ≡
∆
−1/2
n√

ϑmax (t−1, QV n
t /(BV

n
t )2)

(
µ−2

1 BV n
t

RV n
t

− 1

)
→ N (0, 1),

where QV n
t is the realized quadpower variation:

QV n
t ≡ ∆−1

n

n∑
i=4

|∆Xn
t,i||∆Xn

t,i−1||∆Xn
t,i−2||∆Xn

t,i−3|.

2.5 FDR thresholding

In addition to the Universal threshold, we also report results using the data-

adaptive thresholding scheme of Abramovich, Benjamini, Donoho and John-

stone (2006), based on the control of the false discovery rate (FDR). FDR
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control is a relatively recent innovation in simultaneous testing, which ensures

that at most a certain expected fraction of the rejected null hypothesis corre-

spond to spurious detections. Throughout the paper, we set the FDR target

level at 10%, which results in a less conservative threshold level than with the

universal threshold, and eliminates fewer jump days. We obtain qualitavily sim-

ilar results with an FDR level between 5% and 20%. Setting the FDR target

level to zero is equivalent to using the universal threshold.

3 Monte Carlo study

In this section, we examine the effectiveness of our method to remove spurious

detections by performing Monte Carlo experiments. The asymptotic result of

Theorem 1 requires that N and n tend to infinity. Here we assess the finite

sample performance of our method. We use a sample path of 756 days, consist-

ing of 6.5 hours of trading, which corresponds to the three-year period in our

empirical study. We perform 1,000 Monte Carlo iterations.

The data generating process for the log-price is the stochastic volatility

with rare jumps model employed by Barndorff-Nielsen and Shephard (2004)

and Huang and Tauchen (2005):

dXt = µdt+ exp(β0 + β1vt)dWt + jsdNt,

dvt = αvvtdt+ dBt,

where Wt and Bt are both Brownian motions and E[dWtdBt] = ρdt. The

parameters are the same as in Huang and Tauchen (2005)—calibrated to be

realistic for the US equity market. Using one day as the time unit, µ = 0.03,

β0 = 0, β1 = 0.125, αv = −0.1, ρ = −0.62. Our jump component is slightly

different. Nt is a Poisson process with intensity λ = 40 (jumps per year) chosen

to correspond to what we observe in our data. Contrary to Huang and Tauchen

(2005), we use jumps of constant size js. We avoid the trivial situation where

the jump sizes are very large, and perform our study for js = 0.25 (small jump),

js = 0.5 (medium jump), and js = 1 (large jump). We approximate the diffusion

process through the Euler scheme with an Euler tick of one second. We discard

the burn-in period, i.e., the first 500 data points of the whole series, to avoid

the starting value effect.

To detect the jumps, we use the adjusted ratio statistic of BNS. The indi-

vidual tests are performed at the 5% significance level. In order to meet the
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conditions of the theorem, which states that the number of observations within

the day must be larger than the number of days, we apply our thresholding

technique over six-month periods. This constraint arises because the sampling

frequency is limited by the increasing microstructure noise at higher frequen-

cies. If we apply our method to the foreign exchange market open non-stop and

not only during the 6.5 daily trading hours of the equity market, the constraint

dissapears. The impact of splitting the sample into six-month periods is very

small, i.e., the universal threshold moves from 3.6 to 3.1.

Table 1 shows the size across different sampling frequencies with respec-

tively, no account for spurious detections, use of the universal threshold, and

use of the FDR threshold. The results show that our thresholding technique

eliminates almost all spurious detections. Table 2 displays the proportion of

days erroneously identified as containing a jump, for different sampling fre-

quencies and jump sizes. Applying the FDR threshold leaves around 2.5% of

spurious detections, consistent with the fact that we control the FDR at 10%2.

Table 3 shows the percentage of true jumps detected. Our thresholding tech-

nique has an impact on the ability to detect jumps only in situations where

the power of the underlying test is low, e.g., small jumps or low sampling fre-

quency. Moreover, a little drop in power is in many cases compensated by the

elimination of the spurious detections.

[Tables 1, 2, and 3]

4 Empirical results

4.1 Data

We conduct our analysis over the three-year period from January 2006 to De-

cember 2008, on the 30 stock composing the Dow Jones Industrial Average

(DJIA) index between November 21, 2005 and February 19, 2008. Most stocks

are traded on the NYSE, except for Microsoft and Intel which trade on the

NASDAQ. The data is extracted from the TAQ database. In addition to the

individual stocks, we also study the behavior of the index. The TAQ database

2Assume there are 252 trading days in a year, among which 40 are jump days. Before

thresholding, we detect the 40 jumps and, supposing we perform the individual tests at the

5% level, make on average (252-40)0.05=10.6 spurious detections. Applying the FDR threshold

with a target rate of 10%, we remain with 10.6×0.1 = 1.06 spurious detections, or 1.06/(40 +

1.06) = 2.58% of the selected days.
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does not have Dow Jones intraday data. Therefore, we use the DIAMONDS

Trust (DIA) exchange-traded fund (ETF) which tracks the Dow Jones index3.

In addition to using the DIAMONDS ETF, we also construct a price-weighted

portfolio comprised of the 30 stocks as in Bollerslev, Law and Tauchen (2008).

We refer to this index as PWI in the sequel4.

The degree of preprocessing and the choice of the sampling frequency are

crucial aspects of volatility estimation and jump detection in high-frequency

data. The cleaning of high-frequency data has been discussed in e.g. Dacorogna,

Gencay, Müller, Olsen and Pictet (2001), and Hansen and Lunde (2006) and

the consecutive discussion. Hansen and Lunde (2006) argue that tossing out

a large number of observations can in fact improve volatility estimators. Our

data cleaning procedure closely follows Barndorff-Nielsen, Hansen, Lunde and

Shephard (2009). We consider only trades with a time stamp between 9:35

a.m. and 4:00 p.m., i.e., we remove the first five minutes of the day. This

period incorporates adjustments to the information accumulated overnight, and

consequently displays a much higher average return variability than any other

5-minute interval. We eliminate obvious data errors such as transaction prices

reported at zero, transaction times that are out of order, trades with a non-zero

‘correction indicator’. We aggregate all transactions with the same time stamp

to the median price. Finally, we discard ‘bounce back’ outliers as defined in

Aı̈t-Sahalia, Mykland and Zhang (2009).

The empirical results also depend on the sampling frequency. There is a

trade-off between preserving the continuous time assumption and avoiding mi-

crostructure noise effects. If data is sampled too sparsely, jumps disappear

because of time averaging. For example, sampling every 15 minutes leads to

only 26 daily observations. Although the validity of the corresponding results is

questionable, such a large sampling interval has been used in numerous studies.

On the other hand, when sampling at increasing frequency, it becomes difficult

to separate the price process from the microstructure noise. Microstructure

effects include bid-ask bounces, the discreteness of price changes, the gradual

response of prices to a block trade, the strategic component of the order flow,

etc. In our empirical study, we sample at the two-minute frequency. At that

3DIAMONDS trade on NYSE Arca. The all-electronic NYSE Arca is the largest listing

and trading platform for ETFs in the U.S.
4The Dow Jones index is a price-weighted average scaled by the Dow Divisor to compensate

for the effects of stock splits and other adjustments.

11



frequency, the noise is negligible for the stocks and the time period we con-

sider. The volume of transactions has increased dramatically in the last few

years, probably due to the emergence of high-frequency trading. The tick size

reduction from 1/16 of 1 dollar to 1 cent on January 29, 2001 has also greatly

reduced the problem of bid-ask bounce. Hence, previous recommendations con-

cerning a reasonable frequency to avoid microstructure noise are probably too

conservative today.

Another issue when working with high-frequency data, is whether to sam-

ple in tick time or in calendar time. Oomen (2006) discusses the benefits of

tick-time sampling for the estimation of volatility, and Andersen, Dobrev and

Schaumburg (2009) study their volatility estimators under both calendar and

tick time sampling. As the limit theories underlying the individual jump tests

we use are derived under the assumption of equidistant sampling, we sample in

calendar time.

4.2 Number of jumps after removing spurious detections

[Figure 1]

Figure 1 illustrates the thresholding process for Microsoft (MSFT) during

the first six months of 2007. For each day in the sample, the points show the

value of the BNS adjusted ratio statistic. Dashed lines show the critical value

of the individual tests, the FDR threshold, and the universal threshold. The

jumps selected after applying the FDR threshold are shown by asterisks, and the

spurious detections are depicted by circles. Table 4 displays the average number

of jumps per year for each stock, respectively before thresholding, after apply-

ing the universal threshold, and after applying the FDR threshold. Around

50% of the jump days selected initially are eliminating after applying the FDR

threshold. The resulting average number of jumps per year amounts to around

40. Table 4 also shows the number of jumps in the exchange-traded DIA fund

and in our price-weighted portfolio PWI. Once we remove spurious detections,

the PWI jumps less often than its average constituents. This smaller amount

of jumps is probably explained by an averaging phenomenom in the PWI. On

the contrary, we detect more jumps in DIA than in the stocks it is supposed

to track. The ETF is an asset subject to its own microstructure effects. The

smaller amount of jumps in DIA than in PWI is consistent with the results

of Bollerslev, Law and Tauchen (2008). We come back to the different results
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obtained with DIA and PWI when we study cojumps and the relation between

jumps and news announcements.

The Monte Carlo shows the good properties of the underlying jump detec-

tion method and of our thresholding technique. Although the power deteriorates

with diminishing jump size and sampling frequency, the results in a simulation

setting are very good. In practice however, the results can be heavily influ-

enced by different phenomena acting simultaneously. Not knowing which effect

is stronger (e.g. very small jumps, microstructure noise) renders the analysis of

the results even more difficult. One illustration of the difficulty to run the tests

on real data is the low intersection between jumps detected by different tests.

For example, Gilder (2009) shows that the methods of Andersen, Bollerslev

and Dobrev (2007) and BNS agree on only 50% of detected jump days. There

are more phenomena at hand than simply spurious detections due to multiple

testing which cause the discrepancies between the number of jumps before and

after applying the different thresholds. The ideal threshold lies probably be-

tween the universal and the FDR threshold. The universal threshold eliminates

nearly 100% of the spurious detections, but also discards some true jumps. On

the other hand, the FDR threshold is less likely to remove actual jumps, but

leaves some spurious detections. The reader must be aware of these issues in

the remaining of this study, just as when looking at empirical results obtained

with any existing jump detection technique.

[Table 4]

5 Dynamics of jump occurrences

[Tables 5]

Since the work of Merton (1976) on the application of jump processes in

option pricing, the inclusion of jumps in financial modeling has gained a lot

of attention amongst academics and practitioners. For example, the empirical

option pricing literature shows that jumps are necessary to capture the short

term skew. The widely used assumption is that jump arrival times follow a

simple Poisson process. In the present section, we study the dynamics of jump

arrivals to asses whether this assumption is not overly simplistic.

The jump test of BNS indicates whether one or more jumps occurred on

a given day but does not give the exact number of jumps. As a result, we
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cannot observe the durations between successive jumps and are unable to test

whether they follow an exponential distribution. For the same reason, because

the corresponding probability of more than one jump in a day is high, we

cannot use the standard methods to test whether jumps occurrences are driven

by a simple Poisson process. To circumvent this difficulty, we use the runs

test developed by Mood (1940)5. As we show in the appendix by performing a

Monte Carlo study, the runs test is a powerful method to detect clustering of

jumps in time in our setting. Our simulations also illustrate the importance of

removing the spurious detections e.g. with our thresholding technique in order

to get a correct picture of the jumps dynamics. In our simulations, the power of

the runs test to detect non-Poisson jump arrivals drops from 86% to 65% if we

do not eliminate the spurious jumps (see Table 14). Table 5 reports the results

of the runs test for the 30 Dow Jones stocks over the period from January

2006 to December 2008. With no account for spurious detections, we detect

the presence of clustering in only three stocks (AIG, Microsoft and AT&T).

After applying the FDR threshold, the proportion of stocks with non-random

jump arrival increases to almost 25%. After applying the universal threshold,

we detect clustering of jumps in only less than 7% of the stocks. However,

this latter result is probably biased by the decrease of power of the runs test

due to the small number of observations remaining after applying the universal

threshold. Looking at our two index proxies, the runs test indicates that jumps

in DIA cluster in time whereas jumps in PWI do not. Once again, the DIA index

behaves as a proper asset, whereas effects affecting the individual components

are averaged out in the PWI portfolio.

Even if we do not observe exactly the durations between successive jumps, in

particular if there are many jumps within the same day, we can still estimate the

parameters of the simple Poisson process that would have most likely generated

the observations. If we suppose that the durations between jumps follow an

5The runs test compares the number of sequences of consecutive days with jump and

without jump, or runs, against its sampling distribution under the hypothesis of random

arrival. For example, a particular sequence of 10 jump tests may be represented by 0011101001,

containing three runs of 1s, and three runs of 0s. In contrast, the sequence 1111100000 contains

the same number of 0s and 1s, but only two runs. Too few runs indicate the presence of

clustering. Too many runs indicate an oscillation. The runs test has been used in Fama

(1965) to test the random walk hypothesis of stock returns. See Section 2.2.2 of Campbell, Lo

and MacKinlay (1996) for details and the exact test statistic. We use the runstest function

from the MATLAB Statistics Toolbox.
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exponential distribution with parameter λ, then the probability of one or more

jumps occurring on a given day is 1 − e−λ. Hence, even if we do not observe

the exact number of jumps within days, we can estimate λ as λ̂ = − ln(1− p̂),
where p̂ denotes the estimated probability of occurrence of a jump, obtained

as the ratio of the number of days with jumps over the total number of days.

For the stocks for which the runs test indicates no time clustering of jumps, λ̂

ranges from 0.06 to 0.27, when using the FDR threshold. This corresponds to

a mean duration between successive jumps of respectively 16.1 and 3.7 days.

Figure 2 displays an example of the exponential distribution fitted for Microsoft,

along with the histogram of the durations. Panel (a) shows the results before

thresholding and Panel (b) after applying the FDR threshold. Remember that

we do not observe the inter jump durations exactly. Therefore, the bars of the

histogram represent grouped data, and do to take into account the possibility of

more than one jump per day. For example, if we detect a first jump on day t and

the following jump on day t+2, the true duration between both jumps can range

from one to three days, depending on when exactly the jumps occur within the

day. That is without considering the event of multiple jumps per day. Therefore,

the first bar of the histogram shows the number of times two consecutive days

are detected to contain jumps, which corresponds to durations ranging from

zero to two days. A visual inspection of the histogram does not lead to reject

the Poisson hypothesis. The bottom of Figure 2 plots the durations between

successive jumps.

[Figure 2]

6 Cojumps

Jumps in individual stocks can be generated by either stock-specific news or

common market-level news. Market-level news can cause jumps in many stocks

simultaneously and can induce discontinuities even in a diversified index. In

this section, we study simultaneous jumps (cojumps) in the Dow Jones stocks

and their relation to jumps in the index. We examine in detail the relation

between jumps and news announcements in the next section. Other empirical

studies of cojumps include Bollerslev, Law and Tauchen (2008) who examine the

relationship between jumps in a sample of forty large-cap U.S. stocks and the

corresponding aggregate market index, Lahaye, Laurent and Neely (2010) who

investigate cojumps between stock index futures, bond futures, and exchange
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rates, and Dungey, McKenzie and Smith (2009) who consider simultaneous

jumps across the term structure.

We define cojumps with the univariate BNS test as simultaneous significant

jumps, i.e., occurring on the same day, rather than using any of the multivari-

ate tests proposed e.g. by Bollerslev, Law and Tauchen (2008), or Jacod and

Todorov (2009). Even if there is no day in our sample where the 30 stocks

all jump together, we do detect a jump in 50% or more of the stocks on a

few occasions, i.e., on 29 days before thresholding, on two days when applying

the FDR threshold (September 18, 2007 and February 25, 2008), and on one

day when applying the universal threshold (February 25, 2008). September 18,

2007 is an exmple of a market-level annoucement, i.e., the Federal Open Market

Committee (FOMC) decision to lower its target for the federal funds rate 50

basis points to 4-3/4 percent. After applying the FDR threshold, 54% of the

Dow Jones stocks are detected to cojump on that day. Figure 3 displays the

simultaneous jump at 2:15 p.m. in JPMorgan Chase, IBM, Microsoft, and 3M.

[Figure 3]

6.1 Cojumps with index

In this section, we investigate the relation between jumps in our index proxies

and jumps in the individual Dow Jones stocks. Table 6 shows the likelihood of

a jump in DIA or PWI conditional on the proportion of stocks cojumping, for

respectively no thresholding, use of the universal threshold, and use of the FDR

threshold. The probability of a jump in the index increases with the number

of stocks jumping simultaneously and becomes significantly more important

if more than 40% of the stocks jump. From the second column of Table 6

which gives the corresponding number of occurrences, we see that this is a rare

event. For example, after applying the FDR threshold, we observe more than

40% of the stocks jumping simultaneously on only 7 out of 747 days. Once

again, the FDR threhold results show that PWI jumps less often than DIA.

The DJIA index is a price-weighted average, which gives higher-priced stocks

more influence than to their lower-priced counterparts. As a robustness check,

we perform our analysis using the price-weighted proportion of stocks jumping

simultaneously. We obtain very similar results.

Table 7 displays information on the distribution of the proportion of stocks

jumping simultaneously, depending on whether or not there is a jump in the
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index. When applying the FDR threshold, the average percentage of stocks

jumping raises from 12.5% to 17.7% when there is a jump in DIA, and can

reach 70%. With no jump in the index, the percentage of stocks jumping on

the same day never exceeds 40%.

[Tables 6 and 7]

6.2 Cojumps within industry sectors

During the three years of our study, we find no single cojump affecting all Dow

Jones constituents. However, we observe a significant number of cojumps if we

group stocks by industry sectors. Table 8 shows the repartition of our thirty

stocks among the different Global Industry Classification Standard6 (GICS)

sectors, and Table 9 displays the number of cojumps within each sector for

respectively, no account for spurious detections, use of the universal threshold,

and use of the FDR threshold. An asterisk indicates that there are no more

cojumps than if the stocks jumped independently7. For all but two sectors

the number of cojumps is significant. Hence, at least part of the simultaneous

jumps must be driven by sector-level events.

[Tables 8 and 9]

7 Relation to news releases

In this section we investigate the relation between jumps and information ar-

rival. We consider successively macroeconomic news, which can explain simul-

taneous jumps in many stocks, and news specific to a particular company.

7.1 Macroeconomic news

[Tables 10 and 11]

6The Global Industry Classification Standard (GICS) is an industry taxonomy developed

by Morgan Stanley Capital International (MSCI) and Standard & Poor’s.
7Under the null hypothesis that stocks jump independently, the probability that the stocks

jump simultaneously on a given day is the product of the jump probabilities of the individual

stocks. The distribution of the corresponding test statistic is obtained from a simple applica-

tion of the Central Limit Theorem and the Delta method. See supplementary appendix for

details.
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We investigate whether jumps occurring in many stocks simultaneously or

in our index proxies can be explained by macroeconomic news. There is a long

literature on market reaction to macroeconomic news. Cutler, Poterba and

Summers (1989) estimate the fraction of the variance in aggregate stock returns

that can be attributed to various kinds of news, including major political and

world events. Ederington and Lee (1993) and Ederington and Lee (1996) are the

first to investigate the intraday reaction of bond prices to macro announcements.

More recently, Andersen, Bollerslev, Diebold and Vega (2007) show using high-

frequency data that reaction times to news are very short, and Aı̈t-Sahalia,

Andritzky, Jobst, Nowak and Tamirisa (2010) examine the market response to

policy initiatives during the recent financial crisis. To our knowledge, however,

the only papers studying the link between jumps in assets and macroeconomic

news are Dungey, McKenzie and Smith (2009), Lahaye, Laurent and Neely

(2010), and Huang (2007). Numerous other studies which mention the relation

of jumps to macroeconomic announcements merely investigate the timing of

jumps to see whether an unusual pattern corresponds to a regularly scheduled

news announcement.

For all announcements except the target Fed funds rate, we use the Interna-

tional Money Market Services (MMS) data on expected (surveyed) and realized

(announced) macroeconomic fundamentals. MMS conducts a Friday telephone

survey of about 40 money managers, collects forecasts of all indicators to be

released during the next week, and reports the median forecasts from the sur-

vey. One of the first article to use the MMS survey data is Andersen, Bollerslev,

Diebold and Vega (2003). The authors study the effect of macro announcements

on U.S. dollar spot exchange rates but do not look at jumps. The target Fed

funds rate forecasts are obtained from Action Economics, which also gathers

estimates on economic data once a week from economists, strategists, and a few

traders. We obtain the data from Haver Analytics. As of December 16, 2008,

the funds target rate is a range, i.e., zero to 0.25%, rather than a specific rate.

The Federal Open Market Committee (FOMC) can also surprise the market by

changing the Fed funds target between scheduled meetings. In our sample, the

decisions following such unscheduled meetings are always released early on the

next morning and therefore do not cause jumps during market hours.

We consider only the announcements released during the trading hours,

listed in Table 10. Table 11 presents the results with respectively no thresh-

olding, use of the universal threshold, and use of the FDR threshold. For each
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macroeconomic news, the table displays the number of announcement days in

our sample, the average probability of a jump in individual stocks on an an-

nouncement day, the probability of a jump in the Diamonds ETF, and the

probability of a jump in our PWI portfolio. The last row presents correspond-

ing results based on all days in our sample independently on the presence or

absence of news. The only announcement which increases the likelihood of a

jump is the target Fed funds rate. After applying the FDR threshold, the un-

conditional average probability of a jump in stocks on a given day is 14.4%. On

a day with a scheduled FOMC meeting, this proportion increases to 18%, but

the difference is not statistically significant8. Figure 3 displays an example of a

simultaneous jump in many stocks immediately following an FOMC announce-

ment. Even if no jump is detected, however, most FOMC meetings are followed

by a strong reaction in stock prices as illustrated in Figure 4. Following the

news, the volatility increases but the variation is caused by the Brownian part

only and not by a jump. Hence, our results show that in the equity market,

a majority of announcements are not followed by a jump. This conclusion dif-

fers from the findings in other markets. For example, Dungey, McKenzie and

Smith (2009) find that two thirds of cojumps in bond prices coincide with a

scheduled US news release. The importance of removing spurious detections

with e.g. our thresholding technique is highlighted once again as the effect just

described is not apparent before thresholding. For example, before threshold-

ing the probability of a jump in DIA appears larger on days with no FOMC

meeting.

As already noticed in the previous sections, the results of Table 11 show that

the PWI portfolio jumps less often than the DIA fund. The ability to detect

jumps of the BNS test depends on the size of the jump relative to the total

variation of the process. Therefore, when the discontinuities in the individual

stocks are averaged out in the PWI portfolio, some jumps can no longer be

detected. This explains the lower amount of jumps in PWI. On the other

hand, DIA is a proper asset subject to its own microstructure effects. The

discrepancies between DIA and PWI show that the exchange-traded fund is

sometimes subject to a decoupling from the index it is tracking. For example,

8Denote by p1 and p2 the probabilities of a jump on respectively a news day and a day with

no announcement. Let n1 be the number of news days and n2 the number of days with no

announcement. For n1
n1+n2

−→ λ, we can test the null hypothesis of no link between jumps and

announcements using the following asymptotic normality result:
√

n2
n1+n2

p̂1 −
√

n1
n1+n2

p̂2 ∼
N (0, (1− λ)p1(1− p1) + λp2(1− p2)), where the p̂’s denote estimated probabilities.
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imagine a news release that causes only a few stocks to jump. The resulting

discontinuities disappear in PWI when we add them to the movements of the

other stocks. The DIA fund however is traded as one proper asset and can still

be affected by the announcement. Table 11 illustrates indeed that DIA is more

likely to jump after a news release.

It may not be the act of releasing information to the market itself that is im-

portant. Rather, it may be the extent to which the actual announcement differs

from the market expectation, i.e. the surprise content of each announcement,

that determines whether assets jump in reaction to the information release.

We capture the surprise content of the announcements using the survey data

from MMS and Action Economics. To account for the discrepancies across

the various news items, we compute the standardized surprise, defined as the

difference between expectations and realizations, divided by the standard devi-

ation. We do not observe any effect caused by the surprise component of macro

news announcements, even if we consider separately surprises above and below

expectations. The detailed analysis is available upon request.

[Figure 4]

7.2 Scheduled company-specific announcements

In the previous section, we have looked at the impact of different market-wide

announcements. We now switch the focus to company-specific announcements.

First, we investigate whether dividends can cause the stock price to jump. We

obtain data from COMPUSTAT and CRSP (for the declaration date). We do

not observe significantly more jumps on the ex-dividend date. This result is not

surprising, given that companies usually commit to dividend policy for the long

run, that the amounts are known in advance, and that dividends are settled after

the bell. The likelihood of a jump does not increase on the dividend declaration

date either. The observed probability of a jump on a dividend declaration day

(pooling all the stocks together) is actually lower than the overall proportion of

days with jump, i.e., 12.2% against 14.4% when applying the FDR threshold.

Second, using data from I.B.E.S., we perform a similar analysis for quarterly

earnings announcements9. Again, we find that jumps do not occur more often

on earnings announcement days. This is explained by the fact that earnings

9Patton and Verardo (2009) show that the beta of individual stocks increases by an eco-

nomically significant amount on quarterly earnings announcement days.
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are most often announced outside of the trading hours. If we focus on the 15

announcements made during trading hours, which represent only 4.2% of all

the announcements for the 30 stocks during our three-year sample, we observe

that the likelihood of a jump increases slightly to 20% (when using the FDR

threshold). Remember that the average unconditional probability of a jump

after applying the FDR threshold is 14.4%. The difference is not significant.

Hence, our results put into perspective the findings of Lee and Mykland (2008)

who always detect a jump on the three earnings announcement days in their

sample. The detailed analysis of the impact of dividends and quarterly earnings

announcements is available upon request.

7.3 Company-specific news releases

[Table 12]

In this section, we investigate whether jumps can be explained by news

stories from two major newswires, i.e., Dow Jones News Service (DJNS) and

Reuters News. By examining the content of news, we can analyze the impact

of a variety of unscheduled and uncategorized events and are not limited to a

predetermined set of event types such as earnings announcements, mergers, or

analysts’ recommendations. To our knowledge, the present study is the first to

perform an extensive analysis of the relation between news media publications

and price discontinuities. Cutler, Poterba and Summers (1989) is one of the first

empirical studies to explore the link between news coverage and stock prices.

Lee and Mykland (2008) examine the association of financial news releases

with jump arrivals on a small sample of three stocks over three months. Tetlock

(2007) and Tetlock, Saar-Tsechansky and Macskassy (2008) attempt to quantify

the language used in financial news stories. They are the first to investigate the

relation of investor sentiment to stock market activity by analyzing news media

content. The two papers are different from our study, however, as our aim is

not to extract the qualitative content of media publications.

We access the DJNS and Reuters News newswires through Factiva. Factiva

is a news database that aggregates content from thousands of leading news and

business sources. Retrieving information effectively from such a huge repository

is a difficult task. The perfect mix of getting everything and avoiding irrelevant

or erroneous stories is difficult to achieve. The technology to automatically
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quantifying language content is not ripe for the scope of our study10. Therefore,

we rely on the taxonomy applied by Factiva which provides a hierarchy of

company names, industries, regions, and subjects. Such an indexing allows for

example to narrow search results on a specific topic, or retrieve stories which are

actually about a particular company, and not all the stories where the company

name merely occurs.

One problem with the Factiva web interface is that it does not allow to

perform queries on the “publication time” field. To circumvent this problem,

we export all the news stories in XML format. We then parse the XML files

and reconstruct our own database. Although the “publication time” field is

not searchable using the web interface, it is encoded properly when exporting

documents in XML format. As we can download the full articles with indexing,

we do not loose any information. This process also allows us to perform text

analysis inside the articles, and run custom searches efficiently. Keeping news

published in the US only, we are left with 30,071 DJNS stories and 31,228

Reuters stories about our thirty companies during our three-year sample11.

The stocks we consider are large multinational companies and are the subject

of one or more stories almost every day. We further eliminate irrelevant stories

by selecting news published during market hours only and by requiring that the

company name appears in the headline12. This allows us to reduce the number

of stories to 8,498 for DJNS and 6,520 for Reuters News, which corresponds to

around one story every three days for each stock.

Having eliminated the irrelevant stories, we analyze the probability of jumps

occurring on specific news types using the Factiva indexing hierarchy. We also

investigate the impact of news flagged as“Down Jones/Reuters Top Wire News”

in order to capture any uncategorized and unusual story. An important pro-

portion of the “Top Wire News” are stories about earnings. The majority of

10Tetlock (2007) and Tetlock, Saar-Tsechansky and Macskassy (2008) are only able to con-

struct a simple indicator of media pessimism, or look at the fraction of negative words.
11These numbers are obtained by using the Factiva option to remove duplicates and ex-

clude republished news, recurring pricing and market data, and non-business stories such as

obituaries, sports or calendars. occurence
12The Factiva indexing system does not solve the aboutness vs occurrence issue perfectly.

For instance, an article containing a “Top Wire News” story about Microsoft and secondarily

mentioning Intel will also be retrieved in a search for “Top Wire News” and Intel, although

the information might be not very important for Intel. When imposing that the headline

mentions the company name, we must account for the fact that one company can have different

denominations. For example, Bank of America appears as BofA, Bank of Amer, or B. of A.
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them is discarded, however, when we eliminate news released outside market

hours. Table 12 presents results for a selection of news types susceptible to

cause jumps. Results for further kinds of news are available upon request. As

one additional precaution, we require that a particular news appears simultane-

ously on both the DJNS and Reuters News wires. For each news type, the first

two columns indicate the total number of stories and the number of stories pub-

lished during market hours. 78 percent of the announcements are made outside

market hours. Once again, only by reconstructing our own database are we able

to filter out news outside market hours automatically. The remaining columns

show the conditional pooled probability of a jump on days a news is released,

for each type of news. Results are reported for respectively no account for spu-

rious detections, use of the universal threshold, and use of the FDR threshold.

An asterisk indicates that the likelihood of a jump is significantly larger after

a news is released than on days with no news of the same type. After ap-

plying the FDR threshold, the unconditional probability of a jump computed

over all days and stocks is 14.4 percent. The news types for which we observe

an increased probability of jumps are “Down Jones/Reuters Top Wire News”

(27.1%), “Government Contracts” (29.5%), “Divestitures/Asset Sales” (28.6%),

“Share Capital” (33.3%), “Share Buybacks” (42.9%) (a subcategory of “Share

Capital”), and “Sales Figures” (23.1%). Recall that the probability of a jump on

FOMC meeting days is 18 percent. The only news type for which the increase

in the likelihood of a jump is statistically significant is “Share Buybacks”. Our

results show that news releases are not very likely to cause jumps. Companies

purposefully shift most important announcements after the bell or early in the

morning in order to avoid uncontrolled investor reactions and the consequent

impact on the stock price.

Our findings differ from the conclusions of Lee and Mykland (2008). First,

Lee and Mykland (2008) sample at the low 15-minute frequency and keep the

opening transactions, which leads them to systematically detect jumps in the

first return of a day. The opening transactions of each day are very erratic and

do not correspond to normal returns as they result from information accumu-

lated over the night. Second, the companies under consideration are the subject

of articles every day. It is therefore not surprising that Lee and Mykland (2008)

are able to find a story for each day they detect a jump. If all such events would

systematically induce jumps, we should observe jumps scattered across the day,

and not just when the market opens.
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Finally, we take a closer look at the stock price reaction when a company

announces a share repurchase program, as it is the only kind of news to signif-

icantly increase the probability of a jump. Our entire sample contains 35 news

about share buybacks, from which 7 are released during market hours. We

want to verify that if a jump is caused by the publication of a news, then the

jump immediately follows the news. The BNS jump test does not return the

precise moment the jump occurs. However, in our example it is easy to spot the

jump by visually inspecting the price trajectories displayed in Figure 5. Table

13 displays the headline and publication time of the corresponding news and

indicates whether the BNS test detects a jump. For the three announcements

where a jump is detected, i.e., IBM, Johnson & Johnson, and JPMorgan Chase,

the timing match is perfect. A buyback increases earnings per share prospects

and, as expected, the jumps are positive. We also observe an abnormal sudden

price increase after three other announcements of shares repurchase programs,

i.e., Alcoa, American Express, and AT&T. The BNS test does not identify these

as jumps, however, because the reaction to the news is spread over two or three

consecutive returns. Probably, the announcement merely increases the volatil-

ity and the large returns are produced by the Brownian part only. The jump

in AT&T is the less visible. This is maybe due to the fact that the buyback

appears only in the Reuters News headline. Readers of the DJNS must scan

the entire message to obtain the information. For Johnson & Johnson, we do

not observe a jump because the news does not announce a new share repur-

chase program, but signals on the contrary a pause in a repurchase plan already

accepted.

[Table 13]

[Figure 5]
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Appendices

A Proof of theorem

Under the null hypothesis of no jumps the asymptotic distribution of jump test

statistics can be shown to converge to independent standard normal random

variables. These results follows from showing asymptotic negligibility of the

drift contributions and application of a CLT for triangular arrays of martingale

differences.

For each integer n ≥ 1, let the real-valued random variables Y n
t,i, 1 ≤ t ≤ N ,

1 ≤ i ≤ n, form N square integrable martingale difference sequences w.r.t. the

σ-fields Fnt,0 ⊂ Fnt,1 ⊂ . . . ⊂ Fnt,n, that is, suppose that Y n
t,i is measurable w.r.t.

Fnt,i with E[(Y n
t,1)2] < ∞ and E[Y n

t,i|Fnt,i] = 0 a.s. for all n, i and t. The CLT

is applied to quantities which can be written as Snt =
n∑
i=1

Y n
t,i. In the following

theorem we show that the event that the largest and the smallest of the entries

of the vector (Sn1 , . . . , S
n
N ) stay within [−

√
2 logN,

√
2 logN ] becomes certain

for large n and N . We use two conditions on higher moments, which imply the

conditions to apply the CLT for triangular arrays of martingale differences when

n goes to infinity, and require that N is not too large w.r.t. the asymptotics in

n.

Theorem 1. Let Snt =
n∑
i=1

Y n
t,i, 1 ≤ t ≤ N . If, for 0 < γ <∞,

Lnt,2γ = E

[
n∑
i=1

|Y n
t,i|2+2γ

]
→ 0, as n→∞, (1)

Mn
t,2γ = E

∣∣∣∣∣
n∑
i=1

E
[
(Y n
t,i)

2|Fnt,i
]
− 1

∣∣∣∣∣
1+γ
→ 0, as n→∞, (2)

and

(1 +
√

2 logN)3+6γN ≤ α(Lnt,2γ +Mn
t,2γ)−1, (3)

with α > 0. Then,

P

[
sup
t
|Snt | ≤

√
2 logN

]
→ 1, as N,n→∞. (4)

Proof. Conditions (1) and (2) imply the conditions of the CLT for triangu-

lar arrays of martingale differences, and we get the weak convergence of the

distribution P [Snt ≤ x] to the standard normal distribution Φ(x) as n → ∞.

25



Now P

[
sup
t
|Snt | ≤

√
2 logN

]
= P

[
|Sn1 | ≤

√
2 logN, . . . , |SnN | ≤

√
2 logN

]
=

N∏
t=1

P
[
|Snt | ≤

√
2 logN

]
by independence.

From Grama (1997) Theorem 2.1, Condition (3) ensures that we can use exact

bounds for the departure from normality of P
[
Snt ≥

√
2 logN

]
and

P
[
Snt ≤ −

√
2 logN

]
(see also Hauesler (1988) Theorem 2 for exact uniform

bounds, and Lipster and Shiryayev (1989) Section 5.7 Theorems 1 and 2 for

uniform bounds, i.e., Berry-Esseen type bounds, instead of the exact nonuni-

form bounds for moderate deviations that we use here), so that

N∏
t=1

P
[
|Snt | ≤

√
2 logN

]
=

N∏
t=1

(
1− P

[
Snt ≥

√
2 logN

]
−P

[
Snt ≤ −

√
2 logN

] )
=

N∏
t=1

[
1− 2Φ(−

√
2 logN) {1 +Rt(α, γ,N)}

]
,

where the remainder term is

Rt(α, γ,N) = θC(α, γ)
{

(1 +
√

2 logN)3+6γN(Lnt,2γ +Mn
t,2γ)

}1/(3+2γ)

with |θ| < 1 and C(α, γ) being a constant only depending on α and γ. Us-

ing Φ(−
√

2 logN) ≤ φ(
√

2 logN)/
√

2 logN with φ denoting the density of the

standard normal distribution, we deduce the stated result from

N∏
t=1

[
1− 2Φ(−

√
2 logN)

]
=

[
1− 2√

2π
√

2 logNN

]N
→ 1, as N →∞,

and the asymptotic negligibility of the contribution of the remainder term as

N,n→∞ since Rt(α, γ,N) is bounded by θC(α, γ)α3+6γ because of (3).

Condition (3) is rather weak as clearly illustrated in the case of independent

random variables by Grama (1997). Let Y n
t,i = ηt,i/

√
n, where ηt,i form N

given independent sequences of i.i.d. random variables which satisfy E[ηt,1] = 0,

E[(ηt,1)2] = 1, m2γ = E[|ηt,1|2+2γ ] <∞ with 0 < γ <∞. In this case Mn
t,2γ = 0

and Lnt,2γ = n−γm2γ . Thus for standard Gaussian ηt,1, condition (3) is easily

met for various (n,m,α, γ) since m2γ = (2+2γ)!
21+γ(1+γ)!

.

BNS test: We can write the adjusted ratio test statistic of Barndorff-Nielsen

and Shephard (2006) in the above form using
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Y n
t,i := (ϑµ−4

1 ∆nQV
n
t )−1/2

(
µ−2

1 |∆X
n
t,i||∆Xn

t,i−1| − |∆Xn
t,i|2
)
. Since

|Xn
t,i|2+2γ ≤ (ϑµ−4

1 ∆nQV
n
t )−1/2

∞∑
l=0

(
2 + 2γ

l

)(
|∆Xn

t,i||∆Xn
t,i−1|

)2(2+2γ−l)

|∆Xn
t,i|2l,

where

(
2 + 2γ

l

)
=

1

l!

l−1∏
t=0

(2 + 2γ − t), Condition (1) holds from the conver-

gence of ∆−1/2
n ∆1−2(1+γ)

n

n∑
i=2

(
|∆Xn

t,i||∆Xn
t,i−1|

)2(2+2γ−l) |∆Xn
t,i|2l, p ≥ 2, in law

to Gaussian variables for X continuous, the equality ∆
−(1+γ)
n = ∆

−1/2
n ∆

1−2(1+γ)
n

∆
2+γ−3/2
n , and ∆n → 0. Condition (2) holds since

n∑
i=2

E
[
(µ−2

1 |∆X
n
t,i||∆Xn

t,i−1|−

|∆Xn
t,i|2)2|Fnt,i

]
converges to A(4)t (see BNS, proof of Proposition 4.2).

Theorem 1 can be applied to numerous other jump detection tests, such as

Aı̈t-Sahalia and Jacod (2009). The proof is available on request.

B Runs test Monte Carlo study

In the Monte Carlo study of this section, we assess the statistical properties, i.e.

size and power, of the runs test applied to detect time clustering of jumps. Our

simulations also illustrate the importance of eliminating the spurious detections

in order to obtain the true picture of the jumps dynamics. We generate a

total of 10,000 price trajectories corresponding to the setting of our empirical

application, i.e. three years of high-frequency returns. As in Section 3, we use

the model of Huang and Tauchen (2005). Under the null hypothesis of simple

Poisson jumps, the jumps are generated from an exponential distribution with

parameter λ = 40 (jumps per year), calibrated to correspond to what we observe

empirically. Under the alternative hypothesis that jumps cluster in time, we

use an Autoregressive Conditional Duration (ACD) model13. The ACD model

specifies the density of the ith duration between two jumps di, conditional on

past durations. We use the Weibull ACD(1,1) or WACD(1,1) specification.

ψi ≡ E[di|di−1, . . . , d1], the expectation of the ith duration, is given by

ψi = ω + αdi−1 + βψi−1.

The WACD model further assumes that di = ψiεi, where {εi} ∼ i.i.d. Weibull

with parameters (λ, γ). We set the values of the parameters to obtain the same

13See Engle and Russel (1998).
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mean number of jumps as under the null: ω = 0.6, α = 0.3, β = 0.6, λ = 0.79,

and γ = 0.7. The jump size is set to js = 1. We sample at the two-minute

frequency, and use the test of BNS at the 5% significance level to detect jumps.

We then apply the runs test (see Mood (1940)) to test the null hypothesis that

jumps arrive randomly, i.e., do not cluster in time.

The first column of Table 14 presents results on the size of the runs test.

It displays the proportion of times the null hypothesis is rejected when jumps

durations are generated from the exponential distribution. The first three lines

display results from the BNS test, for respectively no account for spurious de-

tections, use of the universal threshold, and use of the FDR threshold. The

last line of the table reports results based on the true (simulated) jumps. The

second column present corresponding results for the power of the runs test, i.e.,

when jumps durations are obtained from the ACD model. The results show

the good size and power properties of the runs test in the setting of our empir-

ical study, and highlight the importance of eliminating the spurious detections

when investigating the dynamics of jumps. When we do not account for mul-

tiple testing, the power to detect time clustering of jumps drops from 85% to

only 65%.

[Table 14]
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Sampling frequency
30 sec 2 min 5 min

No thresholding 5.5 (0.8) 6.1 (0.9) 6.9 (0.9)
Universal threshold 0.2 (0.1) 0.3 (0.2) 0.5 (0.3)
FDR threshold 4.8 (1.0) 5.0 (1.1) 4.9 (1.3)

Table 1: Monte Carlo: Size. Numbers in parenthesis correspond to standard
deviations.

Sampling frequency
Jump size 30 sec 2 min 5 min

Large No thresholding 5.5 (0.9) 6.1 (0.9) 6.9 (1.0)
Universal threshold 0.2 (0.2) 0.3 (0.2) 0.4 (0.3)
FDR threshold 1.1 (0.5) 1.5 (0.5) 1.9 (0.6)

Medium No thresholding 5.5 (0.9) 6.1 (1.0) 6.9 (1.0)
Universal threshold 0.2 (0.2) 0.3 (0.2) 0.5 (0.3)
FDR threshold 1.1 (0.4) 0.9 (0.4) 1.6 (1.0)

Small No thresholding 5.5 (0.9) 6.1 (1.0) 7.0 (1.0)
Universal threshold 0.2 (0.2) 0.3 (0.2) 0.4 (0.3)
FDR threshold 1.2 (0.9) 4.2 (1.3) 4.7 (1.4)

Table 2: Monte Carlo: Proportion of spurious detections. Numbers in paren-
thesis correspond to standard deviations.

Sampling frequency
Jump size 30 sec 2 min 5 min

Large No thresholding 99.9 (0.3) 99.5 (0.7) 96.1 (1.8)
Universal threshold 99.9 (0.3) 99.2 (0.9) 83.0 (3.4)
FDR threshold 99.9 (0.3) 99.4 (0.7) 91.2 (2.7)

Medium No thresholding 99.7 (0.5) 75.2 (4.0) 40.5 (4.8)
Universal threshold 97.2 (1.6) 37.5 (4.5) 11.0 (3.1)
FDR threshold 99.0 (0.9) 50.3 (5.6) 17.7 (4.7)

Small No thresholding 46.9 (4.9) 16.4 (3.6) 10.8 (3.0)
Universal threshold 11.1 (2.9) 1.7 (1.3) 1.0 (1.0)
FDR threshold 19.9 (5.6) 11.6 (3.7) 7.4 (2.8)

Table 3: Monte Carlo: Proportion of jumps detected. Numbers in parenthesis
correspond to standard deviations.
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No Universal FDR
Ticker Company name thresholding threshold threshold
Dow Jones stocks:
AA Alcoa 73.3 16.3 35.0
AIG American International Group 75.3 23.3 41.3
AXP American Express 72.0 17.7 35.7
BA Boeing 57.7 14.0 27.7
C Citigroup 57.7 12.0 21.7
CAT Caterpillar 59.0 15.7 23.3
DD DuPont 81.0 16.3 37.3
DIS Walt Disney 86.7 25.7 52.0
GE General Electric 76.7 23.0 50.7
GM General Motors 77.0 16.3 33.3
HD The Home Depot 70.7 17.7 32.3
HON Honeywell 61.7 13.0 23.3
HPQ Hewlett-Packard 66.7 17.3 31.7
IBM IBM 55.0 11.0 20.7
INTC Intel 89.0 25.3 58.3
JNJ Johnson & Johnson 68.0 18.0 36.0
JPM JPMorgan Chase 60.0 13.3 25.7
KO Coca-Cola 73.7 17.3 37.7
MCD McDonald’s 75.7 21.3 44.7
MMM 3M 62.7 16.3 32.7
MO Altria Group 73.3 20.7 37.0
MRK Merck 69.3 21.7 36.7
MSFT Microsoft 94.0 27.7 64.3
PFE Pfizer 93.0 25.7 55.0
PG Procter & Gamble 61.0 15.0 26.3
T AT&T 82.0 22.7 48.7
UTX United Technologies Corporation 59.3 12.7 23.0
VZ Verizon Communications 75.0 20.7 38.3
WMT Wal-Mart 50.3 7.0 31.3
XOM ExxonMobil 43.7 10.7 15.0

Index:
DIA Diamonds Trust 91.7 25.3 54.3
PWI Price-weighted index 72.7 13.0 33.7

Summary for stocks:
Mean 70.0 17.8 35.9
Median 71.3 17.3 35.3
Minimum 43.7 7.0 15.0
Maximum 94.0 27.7 64.3

Table 4: Average number of jumps per year. Two-minute sampling frequency.
Tests performed over 2006–2008.
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No Universal FDR
Ticker Company name thresholding threshold threshold
Dow Jones stocks:
AA Alcoa 0.93 0.40 0.15
AIG American International Group 0.00∗ 0.00∗ 0.00∗

AXP American Express 0.14 0.13 0.32
BA Boeing 0.89 0.82 1.00
C Citigroup 0.08 0.91 0.98
CAT Caterpillar 0.49 1.00 0.95
DD DuPont 0.65 1.00 0.92
DIS Walt Disney 0.40 0.57 0.02∗

GE General Electric 0.40 0.17 0.53
GM General Motors 0.09 0.45 0.07
HD The Home Depot 0.15 0.35 0.53
HON Honeywell 0.14 0.74 0.63
HPQ Hewlett-Packard 0.55 0.61 0.84
IBM IBM 0.51 0.84 0.85
INTC Intel 0.23 0.26 0.35
JNJ Johnson & Johnson 0.36 0.67 0.37
JPM JPMorgan Chase 0.29 1.00 0.16
KO Coca-Cola 0.45 0.56 0.65
MCD McDonald’s 0.52 0.07 0.06
MMM 3M 0.70 0.40 0.04∗

MO Altria Group 0.16 0.77 0.04∗

MRK Merck 0.92 0.98 0.04∗

MSFT Microsoft 0.00∗ 0.65 0.00∗

PFE Pfizer 0.12 0.02∗ 0.30
PG Procter & Gamble 0.49 0.54 0.11
T AT&T 0.02∗ 0.52 0.00∗

UTX United Technologies Corporation 0.17 0.25 0.17
VZ Verizon Communications 0.49 1.00 0.58
WMT Wal-Mart 0.47 1.00 0.21
XOM ExxonMobil 0.35 0.29 0.54

Index:
DIA Diamonds Trust 0.10 0.01∗ 0.00∗

PWI Price-weighted index 0.21 0.64 0.74

Summary for stocks:
Percentage of stocks with clustering 10.0 6.7 23.3

Table 5: p-values of runs testss of the Null hypothesis that jumps arrive ran-
domly.
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Proportion of stocks Number of P(jump in P(jump in
jumping simultaneously occurrences DIA) (%) PWI) (%)

No thresholding:
0–20% 148 14.2 9.5
20–40% 469 36.0 27.3
40–60% 121 63.6 55.4
60–80% 8 87.5 100.0
80–100% 1 100.0 100.0

Universal threshold:
0–20% 716 9.2 4.3
20–40% 29 27.6 20.7
40–60% 1 100.0 100.0
60–80% 1 100.0 100.0
80–100% 0 - -

FDR threshold:
0–20% 533 15.2 9.8
20–40% 207 36.7 22.2
40–60% 6 83.3 33.3
60–80% 1 100.0 100.0
80–100% 0 - -

Table 6: Likelihood of a jump in the index conditional on the proportion of its
constituents cojumping.

Proportion of stocks Jump in DIA: Jump in PWI:
jumping simultaneously No Yes No Yes

No thresholding:
Mean (%) 25.1 33.4 25.3 35.0
Median (%) 23.3 30.0 26.7 33.3
Maximum (%) 60.0 93.3 53.3 93.3

Universal threshold:
Mean (%) 6.1 9.0 6.2 9.4
Median (%) 6.7 6.7 6.7 6.7
Maximum (%) 23.3 66.7 26.7 66.7

FDR threshold:
Mean (%) 12.5 17.7 12.7 18.5
Median (%) 10.0 16.7 13.3 16.7
Maximum (%) 40.0 70.0 40.0 70.0

Table 7: Proportion of stocks jumping simultaneously conditional on a jump in
the index.
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Industry sector Dow Jones constituents

Energy ExxonMobil
Materials Alcoa, DuPont
Industrials Boeing, Caterpillar, General Electric,

Honeywell, 3M, United Technologies Corporation
Consumer Discretionary Walt Disney, General Motors, The Home Depot,

McDonald’s
Consumer Staples Coca-Cola, Altria Group, Procter & Gamble,

Wal-Mart
Health Care Johnson & Johnson, Merck, Pfizer
Financials American International Group, American Express,

Citigroup, JPMorgan Chase
Information Technology Hewlett-Packard, IBM, Intel, Microsoft
Telecommunication Services AT&T, Verizon Communications

Table 8: Sectors.

Number of cojumps
Nb stocks No Universal FDR

Sector in sector thresholding threshold threshold

Materials 2 76∗ 5∗ 19∗

Industrials 6 3∗ 0 0
Consumer Discretionary 4 9∗ 0 1∗

Consumer Staples 4 3 0 0
Health Care 3 31∗ 1∗ 6∗

Financials 4 10∗ 1∗ 2∗

Information Technology 4 18∗ 0 1∗

Telecom. Services 2 97∗ 6∗ 27∗

Table 9: Number of cojumps within industry sectors. An * indicates that there
are significantly more cojumps than if the stocks were independent.
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Announcement Source Announcement time

Monthly announcements:
Consumer credit FRB 3:00 p.m.
Construction spending BC 10:00 a.m.
Factory orders BC 10:00 a.m.
Business inventories BC 10:00 a.m.
Government budget deficit FMS 2:00 p.m.
Consumer confidence index CB 10:00 a.m.
ISM manufacturing composite index ISM 10:00 a.m.

Six-week announcements:
Target federal funds rate FRB 2:15 p.m.

Table 10: Macroeconomic news announcements. The sources are: Federal Re-
serve Board (FRB), Bureau of the Census (BC), Financial Management Service
(FMS), Conference Board (CB), Institute for Supply Management (ISM).
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Nb of P(jump P(jump P(jump
Announcement ann. in stocks) in DIA) in PWI)
No thresholding:
Monthly announcements:
Consumer credit 35 28.6 (7.6) 42.9 (8.4) 34.3 (8.0)
Construction spending 35 27.9 (7.6) 20.0 (6.8) 11.4 (5.4)
Factory orders 35 29.7 (7.7) 40.0 (8.3) 31.4 (7.8)
Business inventories 36 28.7 (7.5) 41.7 (8.2) 25.0 (7.2)
Government budget deficit 36 25.3 (7.2) 36.1 (8.0) 33.3 (7.9)
Consumer confidence index 36 24.6 (7.2) 33.3 (7.9) 27.8 (7.5)
ISM manufacturing composite index 35 28.4 (7.6) 34.3 (8.0) 25.7 (7.4)

Six-week announcements:
Target federal funds rate 23 29.3 (9.5) 34.8 (9.9) 34.8 (9.9)

All days 747 28.1 (1.6) 36.9 (1.8) 29.2 (1.7)

Universal threshold:
Monthly announcements:
Consumer credit 35 7.2 (4.4) 5.7 (3.9) 0.0 -
Construction spending 35 6.6 (4.2) 8.6 (4.7) 0.0 -
Factory orders 35 7.8 (4.5) 11.4 (5.4) 5.7 (3.9)
Business inventories 36 7.1 (4.3) 11.1 (5.2) 5.6 (3.8)
Government budget deficit 36 5.7 (3.9) 5.6 (3.8) 0.0 -
Consumer confidence index 36 5.7 (3.9) 8.3 (4.6) 5.6 (3.8)
ISM manufacturing composite index 35 7.3 (4.4) 17.1 (6.4) 2.9 (2.8)

Six-week announcements:
Target federal funds rate 23 11.0 (6.5) 17.4 (7.9) 13.0 (7.0)

All days 747 7.2 (0.9) 10.2 (1.1) 5.2 (0.8)

FDR threshold:
Monthly announcements:
Consumer credit 35 13.6 (5.8) 17.1 (6.4) 8.6 (4.7)
Construction spending 35 13.4 (5.8) 14.3 (5.9) 5.7 (3.9)
Factory orders 35 14.0 (5.9) 11.4 (5.4) 14.3 (5.9)
Business inventories 36 14.5 (5.9) 22.2 (6.9) 11.1 (5.2)
Government budget deficit 36 12.5 (5.5) 30.6 (7.7) 8.3 (4.6)
Consumer confidence index 36 11.8 (5.4) 16.7 (6.2) 16.7 (6.2)
ISM manufacturing composite index 35 14.7 (6.0) 22.9 (7.1) 14.3 (5.9)

Six-week announcements:
Target federal funds rate 23 18.0 (8.0) 26.1 (9.2) 21.7 (8.6)

All days 747 14.4 (1.3) 21.8 (1.5) 13.5 (1.3)

Table 11: Probability of a jump on macroeconomic news announcements in
stocks, the DIAMONDS trust, and the PWI index (%). Numbers in parenthesis
correspond to standard deviations.
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Inter-jumps duration:
Exponential (H0) ACD

No thresholding 4.6 (2.0) 65.4 (4.7)
Universal threshold 4.0 (2.1) 85.4 (4.2)
FDR threshold 4.2 (2.0) 83.6 (4.0)

True jumps 4.2 (2.1) 86.9 (3.8)

Table 14: Power and size results of runs test. Numbers in parenthesis corre-
spond to standard deviations.
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Figure 1: Daily test statistics obtained from the BNS test (points), and with
our thresholding methodology (asterisks), for the period between January and
June 2007, MSFT, two-minute sampling frequency.
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Figure 2: MSFT: histogram (top) and plot (bottom) of durations between con-
secutive jumps. In Panel (b), only bars for odd durations are displayed to avoid
clutter.
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Figure 3: On September 18, 2007, the FOMC lowers its target for the federal
funds rate 50 basis points to 4-3/4 percent. As a consequence, 54% of Dow Jones
stocks are detected to jump simultaneously (after applying the FDR threshold).
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Figure 4: On April 30, 2008, the Federal Open Market Committee lowers its
target for the federal funds rate 25 basis points to 2 percent. Very few stocks
are detected to jump, although the reaction of the stock price is strong.
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Figure 5: This figure displays how stock prices react following the 7 announce-
ments about share buybacks in our sample.
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